![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isinffi | Structured version Visualization version GIF version |
Description: An infinite set contains subsets equinumerous to every finite set. Extension of isinf 8584 from finite ordinals to all finite sets. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
Ref | Expression |
---|---|
isinffi | ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐵–1-1→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ficardom 9243 | . . 3 ⊢ (𝐵 ∈ Fin → (card‘𝐵) ∈ ω) | |
2 | isinf 8584 | . . 3 ⊢ (¬ 𝐴 ∈ Fin → ∀𝑎 ∈ ω ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎)) | |
3 | breq2 4972 | . . . . . 6 ⊢ (𝑎 = (card‘𝐵) → (𝑐 ≈ 𝑎 ↔ 𝑐 ≈ (card‘𝐵))) | |
4 | 3 | anbi2d 628 | . . . . 5 ⊢ (𝑎 = (card‘𝐵) → ((𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎) ↔ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵)))) |
5 | 4 | exbidv 1903 | . . . 4 ⊢ (𝑎 = (card‘𝐵) → (∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎) ↔ ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵)))) |
6 | 5 | rspcva 3559 | . . 3 ⊢ (((card‘𝐵) ∈ ω ∧ ∀𝑎 ∈ ω ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎)) → ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) |
7 | 1, 2, 6 | syl2anr 596 | . 2 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) |
8 | simprr 769 | . . . . . 6 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → 𝑐 ≈ (card‘𝐵)) | |
9 | ficardid 9244 | . . . . . . 7 ⊢ (𝐵 ∈ Fin → (card‘𝐵) ≈ 𝐵) | |
10 | 9 | ad2antlr 723 | . . . . . 6 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → (card‘𝐵) ≈ 𝐵) |
11 | entr 8416 | . . . . . 6 ⊢ ((𝑐 ≈ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝑐 ≈ 𝐵) | |
12 | 8, 10, 11 | syl2anc 584 | . . . . 5 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → 𝑐 ≈ 𝐵) |
13 | 12 | ensymd 8415 | . . . 4 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → 𝐵 ≈ 𝑐) |
14 | bren 8373 | . . . 4 ⊢ (𝐵 ≈ 𝑐 ↔ ∃𝑓 𝑓:𝐵–1-1-onto→𝑐) | |
15 | 13, 14 | sylib 219 | . . 3 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → ∃𝑓 𝑓:𝐵–1-1-onto→𝑐) |
16 | f1of1 6489 | . . . . . 6 ⊢ (𝑓:𝐵–1-1-onto→𝑐 → 𝑓:𝐵–1-1→𝑐) | |
17 | simplrl 773 | . . . . . 6 ⊢ ((((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) ∧ 𝑓:𝐵–1-1-onto→𝑐) → 𝑐 ⊆ 𝐴) | |
18 | f1ss 6455 | . . . . . 6 ⊢ ((𝑓:𝐵–1-1→𝑐 ∧ 𝑐 ⊆ 𝐴) → 𝑓:𝐵–1-1→𝐴) | |
19 | 16, 17, 18 | syl2an2 682 | . . . . 5 ⊢ ((((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) ∧ 𝑓:𝐵–1-1-onto→𝑐) → 𝑓:𝐵–1-1→𝐴) |
20 | 19 | ex 413 | . . . 4 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → (𝑓:𝐵–1-1-onto→𝑐 → 𝑓:𝐵–1-1→𝐴)) |
21 | 20 | eximdv 1899 | . . 3 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → (∃𝑓 𝑓:𝐵–1-1-onto→𝑐 → ∃𝑓 𝑓:𝐵–1-1→𝐴)) |
22 | 15, 21 | mpd 15 | . 2 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → ∃𝑓 𝑓:𝐵–1-1→𝐴) |
23 | 7, 22 | exlimddv 1917 | 1 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐵–1-1→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1525 ∃wex 1765 ∈ wcel 2083 ∀wral 3107 ⊆ wss 3865 class class class wbr 4968 –1-1→wf1 6229 –1-1-onto→wf1o 6231 ‘cfv 6232 ωcom 7443 ≈ cen 8361 Fincfn 8364 cardccrd 9217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-sbc 3712 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-om 7444 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-card 9221 |
This theorem is referenced by: fidomtri 9275 hashdom 13592 erdsze2lem1 32060 eldioph2lem2 38864 |
Copyright terms: Public domain | W3C validator |