| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isinffi | Structured version Visualization version GIF version | ||
| Description: An infinite set contains subsets equinumerous to every finite set. Extension of isinf 9214 from finite ordinals to all finite sets. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| isinffi | ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐵–1-1→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ficardom 9921 | . . 3 ⊢ (𝐵 ∈ Fin → (card‘𝐵) ∈ ω) | |
| 2 | isinf 9214 | . . 3 ⊢ (¬ 𝐴 ∈ Fin → ∀𝑎 ∈ ω ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎)) | |
| 3 | breq2 5114 | . . . . . 6 ⊢ (𝑎 = (card‘𝐵) → (𝑐 ≈ 𝑎 ↔ 𝑐 ≈ (card‘𝐵))) | |
| 4 | 3 | anbi2d 630 | . . . . 5 ⊢ (𝑎 = (card‘𝐵) → ((𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎) ↔ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵)))) |
| 5 | 4 | exbidv 1921 | . . . 4 ⊢ (𝑎 = (card‘𝐵) → (∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎) ↔ ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵)))) |
| 6 | 5 | rspcva 3589 | . . 3 ⊢ (((card‘𝐵) ∈ ω ∧ ∀𝑎 ∈ ω ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎)) → ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) |
| 7 | 1, 2, 6 | syl2anr 597 | . 2 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) |
| 8 | simprr 772 | . . . . . 6 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → 𝑐 ≈ (card‘𝐵)) | |
| 9 | ficardid 9922 | . . . . . . 7 ⊢ (𝐵 ∈ Fin → (card‘𝐵) ≈ 𝐵) | |
| 10 | 9 | ad2antlr 727 | . . . . . 6 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → (card‘𝐵) ≈ 𝐵) |
| 11 | entr 8980 | . . . . . 6 ⊢ ((𝑐 ≈ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝑐 ≈ 𝐵) | |
| 12 | 8, 10, 11 | syl2anc 584 | . . . . 5 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → 𝑐 ≈ 𝐵) |
| 13 | 12 | ensymd 8979 | . . . 4 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → 𝐵 ≈ 𝑐) |
| 14 | bren 8931 | . . . 4 ⊢ (𝐵 ≈ 𝑐 ↔ ∃𝑓 𝑓:𝐵–1-1-onto→𝑐) | |
| 15 | 13, 14 | sylib 218 | . . 3 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → ∃𝑓 𝑓:𝐵–1-1-onto→𝑐) |
| 16 | f1of1 6802 | . . . . . 6 ⊢ (𝑓:𝐵–1-1-onto→𝑐 → 𝑓:𝐵–1-1→𝑐) | |
| 17 | simplrl 776 | . . . . . 6 ⊢ ((((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) ∧ 𝑓:𝐵–1-1-onto→𝑐) → 𝑐 ⊆ 𝐴) | |
| 18 | f1ss 6764 | . . . . . 6 ⊢ ((𝑓:𝐵–1-1→𝑐 ∧ 𝑐 ⊆ 𝐴) → 𝑓:𝐵–1-1→𝐴) | |
| 19 | 16, 17, 18 | syl2an2 686 | . . . . 5 ⊢ ((((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) ∧ 𝑓:𝐵–1-1-onto→𝑐) → 𝑓:𝐵–1-1→𝐴) |
| 20 | 19 | ex 412 | . . . 4 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → (𝑓:𝐵–1-1-onto→𝑐 → 𝑓:𝐵–1-1→𝐴)) |
| 21 | 20 | eximdv 1917 | . . 3 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → (∃𝑓 𝑓:𝐵–1-1-onto→𝑐 → ∃𝑓 𝑓:𝐵–1-1→𝐴)) |
| 22 | 15, 21 | mpd 15 | . 2 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → ∃𝑓 𝑓:𝐵–1-1→𝐴) |
| 23 | 7, 22 | exlimddv 1935 | 1 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐵–1-1→𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 class class class wbr 5110 –1-1→wf1 6511 –1-1-onto→wf1o 6513 ‘cfv 6514 ωcom 7845 ≈ cen 8918 Fincfn 8921 cardccrd 9895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 |
| This theorem is referenced by: fidomtri 9953 hashdom 14351 erdsze2lem1 35197 eldioph2lem2 42756 |
| Copyright terms: Public domain | W3C validator |