| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isinffi | Structured version Visualization version GIF version | ||
| Description: An infinite set contains subsets equinumerous to every finite set. Extension of isinf 9158 from finite ordinals to all finite sets. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| isinffi | ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐵–1-1→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ficardom 9863 | . . 3 ⊢ (𝐵 ∈ Fin → (card‘𝐵) ∈ ω) | |
| 2 | isinf 9158 | . . 3 ⊢ (¬ 𝐴 ∈ Fin → ∀𝑎 ∈ ω ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎)) | |
| 3 | breq2 5099 | . . . . . 6 ⊢ (𝑎 = (card‘𝐵) → (𝑐 ≈ 𝑎 ↔ 𝑐 ≈ (card‘𝐵))) | |
| 4 | 3 | anbi2d 630 | . . . . 5 ⊢ (𝑎 = (card‘𝐵) → ((𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎) ↔ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵)))) |
| 5 | 4 | exbidv 1922 | . . . 4 ⊢ (𝑎 = (card‘𝐵) → (∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎) ↔ ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵)))) |
| 6 | 5 | rspcva 3571 | . . 3 ⊢ (((card‘𝐵) ∈ ω ∧ ∀𝑎 ∈ ω ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎)) → ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) |
| 7 | 1, 2, 6 | syl2anr 597 | . 2 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) |
| 8 | simprr 772 | . . . . . 6 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → 𝑐 ≈ (card‘𝐵)) | |
| 9 | ficardid 9864 | . . . . . . 7 ⊢ (𝐵 ∈ Fin → (card‘𝐵) ≈ 𝐵) | |
| 10 | 9 | ad2antlr 727 | . . . . . 6 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → (card‘𝐵) ≈ 𝐵) |
| 11 | entr 8937 | . . . . . 6 ⊢ ((𝑐 ≈ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝑐 ≈ 𝐵) | |
| 12 | 8, 10, 11 | syl2anc 584 | . . . . 5 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → 𝑐 ≈ 𝐵) |
| 13 | 12 | ensymd 8936 | . . . 4 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → 𝐵 ≈ 𝑐) |
| 14 | bren 8887 | . . . 4 ⊢ (𝐵 ≈ 𝑐 ↔ ∃𝑓 𝑓:𝐵–1-1-onto→𝑐) | |
| 15 | 13, 14 | sylib 218 | . . 3 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → ∃𝑓 𝑓:𝐵–1-1-onto→𝑐) |
| 16 | f1of1 6769 | . . . . . 6 ⊢ (𝑓:𝐵–1-1-onto→𝑐 → 𝑓:𝐵–1-1→𝑐) | |
| 17 | simplrl 776 | . . . . . 6 ⊢ ((((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) ∧ 𝑓:𝐵–1-1-onto→𝑐) → 𝑐 ⊆ 𝐴) | |
| 18 | f1ss 6731 | . . . . . 6 ⊢ ((𝑓:𝐵–1-1→𝑐 ∧ 𝑐 ⊆ 𝐴) → 𝑓:𝐵–1-1→𝐴) | |
| 19 | 16, 17, 18 | syl2an2 686 | . . . . 5 ⊢ ((((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) ∧ 𝑓:𝐵–1-1-onto→𝑐) → 𝑓:𝐵–1-1→𝐴) |
| 20 | 19 | ex 412 | . . . 4 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → (𝑓:𝐵–1-1-onto→𝑐 → 𝑓:𝐵–1-1→𝐴)) |
| 21 | 20 | eximdv 1918 | . . 3 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → (∃𝑓 𝑓:𝐵–1-1-onto→𝑐 → ∃𝑓 𝑓:𝐵–1-1→𝐴)) |
| 22 | 15, 21 | mpd 15 | . 2 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → ∃𝑓 𝑓:𝐵–1-1→𝐴) |
| 23 | 7, 22 | exlimddv 1936 | 1 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐵–1-1→𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 class class class wbr 5095 –1-1→wf1 6485 –1-1-onto→wf1o 6487 ‘cfv 6488 ωcom 7804 ≈ cen 8874 Fincfn 8877 cardccrd 9837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-om 7805 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-card 9841 |
| This theorem is referenced by: fidomtri 9895 hashdom 14290 erdsze2lem1 35270 eldioph2lem2 42881 |
| Copyright terms: Public domain | W3C validator |