MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinffi Structured version   Visualization version   GIF version

Theorem isinffi 10006
Description: An infinite set contains subsets equinumerous to every finite set. Extension of isinf 9268 from finite ordinals to all finite sets. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
isinffi ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐵1-1𝐴)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem isinffi
Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ficardom 9975 . . 3 (𝐵 ∈ Fin → (card‘𝐵) ∈ ω)
2 isinf 9268 . . 3 𝐴 ∈ Fin → ∀𝑎 ∈ ω ∃𝑐(𝑐𝐴𝑐𝑎))
3 breq2 5123 . . . . . 6 (𝑎 = (card‘𝐵) → (𝑐𝑎𝑐 ≈ (card‘𝐵)))
43anbi2d 630 . . . . 5 (𝑎 = (card‘𝐵) → ((𝑐𝐴𝑐𝑎) ↔ (𝑐𝐴𝑐 ≈ (card‘𝐵))))
54exbidv 1921 . . . 4 (𝑎 = (card‘𝐵) → (∃𝑐(𝑐𝐴𝑐𝑎) ↔ ∃𝑐(𝑐𝐴𝑐 ≈ (card‘𝐵))))
65rspcva 3599 . . 3 (((card‘𝐵) ∈ ω ∧ ∀𝑎 ∈ ω ∃𝑐(𝑐𝐴𝑐𝑎)) → ∃𝑐(𝑐𝐴𝑐 ≈ (card‘𝐵)))
71, 2, 6syl2anr 597 . 2 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑐(𝑐𝐴𝑐 ≈ (card‘𝐵)))
8 simprr 772 . . . . . 6 (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) → 𝑐 ≈ (card‘𝐵))
9 ficardid 9976 . . . . . . 7 (𝐵 ∈ Fin → (card‘𝐵) ≈ 𝐵)
109ad2antlr 727 . . . . . 6 (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) → (card‘𝐵) ≈ 𝐵)
11 entr 9020 . . . . . 6 ((𝑐 ≈ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝑐𝐵)
128, 10, 11syl2anc 584 . . . . 5 (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) → 𝑐𝐵)
1312ensymd 9019 . . . 4 (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) → 𝐵𝑐)
14 bren 8969 . . . 4 (𝐵𝑐 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝑐)
1513, 14sylib 218 . . 3 (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) → ∃𝑓 𝑓:𝐵1-1-onto𝑐)
16 f1of1 6817 . . . . . 6 (𝑓:𝐵1-1-onto𝑐𝑓:𝐵1-1𝑐)
17 simplrl 776 . . . . . 6 ((((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) ∧ 𝑓:𝐵1-1-onto𝑐) → 𝑐𝐴)
18 f1ss 6779 . . . . . 6 ((𝑓:𝐵1-1𝑐𝑐𝐴) → 𝑓:𝐵1-1𝐴)
1916, 17, 18syl2an2 686 . . . . 5 ((((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) ∧ 𝑓:𝐵1-1-onto𝑐) → 𝑓:𝐵1-1𝐴)
2019ex 412 . . . 4 (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) → (𝑓:𝐵1-1-onto𝑐𝑓:𝐵1-1𝐴))
2120eximdv 1917 . . 3 (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) → (∃𝑓 𝑓:𝐵1-1-onto𝑐 → ∃𝑓 𝑓:𝐵1-1𝐴))
2215, 21mpd 15 . 2 (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) → ∃𝑓 𝑓:𝐵1-1𝐴)
237, 22exlimddv 1935 1 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐵1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3051  wss 3926   class class class wbr 5119  1-1wf1 6528  1-1-ontowf1o 6530  cfv 6531  ωcom 7861  cen 8956  Fincfn 8959  cardccrd 9949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-om 7862  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953
This theorem is referenced by:  fidomtri  10007  hashdom  14397  erdsze2lem1  35225  eldioph2lem2  42784
  Copyright terms: Public domain W3C validator