MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinffi Structured version   Visualization version   GIF version

Theorem isinffi 9983
Description: An infinite set contains subsets equinumerous to every finite set. Extension of isinf 9256 from finite ordinals to all finite sets. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
isinffi ((Β¬ 𝐴 ∈ Fin ∧ 𝐡 ∈ Fin) β†’ βˆƒπ‘“ 𝑓:𝐡–1-1→𝐴)
Distinct variable groups:   𝐴,𝑓   𝐡,𝑓

Proof of Theorem isinffi
Dummy variables 𝑐 π‘Ž are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ficardom 9952 . . 3 (𝐡 ∈ Fin β†’ (cardβ€˜π΅) ∈ Ο‰)
2 isinf 9256 . . 3 (Β¬ 𝐴 ∈ Fin β†’ βˆ€π‘Ž ∈ Ο‰ βˆƒπ‘(𝑐 βŠ† 𝐴 ∧ 𝑐 β‰ˆ π‘Ž))
3 breq2 5151 . . . . . 6 (π‘Ž = (cardβ€˜π΅) β†’ (𝑐 β‰ˆ π‘Ž ↔ 𝑐 β‰ˆ (cardβ€˜π΅)))
43anbi2d 629 . . . . 5 (π‘Ž = (cardβ€˜π΅) β†’ ((𝑐 βŠ† 𝐴 ∧ 𝑐 β‰ˆ π‘Ž) ↔ (𝑐 βŠ† 𝐴 ∧ 𝑐 β‰ˆ (cardβ€˜π΅))))
54exbidv 1924 . . . 4 (π‘Ž = (cardβ€˜π΅) β†’ (βˆƒπ‘(𝑐 βŠ† 𝐴 ∧ 𝑐 β‰ˆ π‘Ž) ↔ βˆƒπ‘(𝑐 βŠ† 𝐴 ∧ 𝑐 β‰ˆ (cardβ€˜π΅))))
65rspcva 3610 . . 3 (((cardβ€˜π΅) ∈ Ο‰ ∧ βˆ€π‘Ž ∈ Ο‰ βˆƒπ‘(𝑐 βŠ† 𝐴 ∧ 𝑐 β‰ˆ π‘Ž)) β†’ βˆƒπ‘(𝑐 βŠ† 𝐴 ∧ 𝑐 β‰ˆ (cardβ€˜π΅)))
71, 2, 6syl2anr 597 . 2 ((Β¬ 𝐴 ∈ Fin ∧ 𝐡 ∈ Fin) β†’ βˆƒπ‘(𝑐 βŠ† 𝐴 ∧ 𝑐 β‰ˆ (cardβ€˜π΅)))
8 simprr 771 . . . . . 6 (((Β¬ 𝐴 ∈ Fin ∧ 𝐡 ∈ Fin) ∧ (𝑐 βŠ† 𝐴 ∧ 𝑐 β‰ˆ (cardβ€˜π΅))) β†’ 𝑐 β‰ˆ (cardβ€˜π΅))
9 ficardid 9953 . . . . . . 7 (𝐡 ∈ Fin β†’ (cardβ€˜π΅) β‰ˆ 𝐡)
109ad2antlr 725 . . . . . 6 (((Β¬ 𝐴 ∈ Fin ∧ 𝐡 ∈ Fin) ∧ (𝑐 βŠ† 𝐴 ∧ 𝑐 β‰ˆ (cardβ€˜π΅))) β†’ (cardβ€˜π΅) β‰ˆ 𝐡)
11 entr 8998 . . . . . 6 ((𝑐 β‰ˆ (cardβ€˜π΅) ∧ (cardβ€˜π΅) β‰ˆ 𝐡) β†’ 𝑐 β‰ˆ 𝐡)
128, 10, 11syl2anc 584 . . . . 5 (((Β¬ 𝐴 ∈ Fin ∧ 𝐡 ∈ Fin) ∧ (𝑐 βŠ† 𝐴 ∧ 𝑐 β‰ˆ (cardβ€˜π΅))) β†’ 𝑐 β‰ˆ 𝐡)
1312ensymd 8997 . . . 4 (((Β¬ 𝐴 ∈ Fin ∧ 𝐡 ∈ Fin) ∧ (𝑐 βŠ† 𝐴 ∧ 𝑐 β‰ˆ (cardβ€˜π΅))) β†’ 𝐡 β‰ˆ 𝑐)
14 bren 8945 . . . 4 (𝐡 β‰ˆ 𝑐 ↔ βˆƒπ‘“ 𝑓:𝐡–1-1-onto→𝑐)
1513, 14sylib 217 . . 3 (((Β¬ 𝐴 ∈ Fin ∧ 𝐡 ∈ Fin) ∧ (𝑐 βŠ† 𝐴 ∧ 𝑐 β‰ˆ (cardβ€˜π΅))) β†’ βˆƒπ‘“ 𝑓:𝐡–1-1-onto→𝑐)
16 f1of1 6829 . . . . . 6 (𝑓:𝐡–1-1-onto→𝑐 β†’ 𝑓:𝐡–1-1→𝑐)
17 simplrl 775 . . . . . 6 ((((Β¬ 𝐴 ∈ Fin ∧ 𝐡 ∈ Fin) ∧ (𝑐 βŠ† 𝐴 ∧ 𝑐 β‰ˆ (cardβ€˜π΅))) ∧ 𝑓:𝐡–1-1-onto→𝑐) β†’ 𝑐 βŠ† 𝐴)
18 f1ss 6790 . . . . . 6 ((𝑓:𝐡–1-1→𝑐 ∧ 𝑐 βŠ† 𝐴) β†’ 𝑓:𝐡–1-1→𝐴)
1916, 17, 18syl2an2 684 . . . . 5 ((((Β¬ 𝐴 ∈ Fin ∧ 𝐡 ∈ Fin) ∧ (𝑐 βŠ† 𝐴 ∧ 𝑐 β‰ˆ (cardβ€˜π΅))) ∧ 𝑓:𝐡–1-1-onto→𝑐) β†’ 𝑓:𝐡–1-1→𝐴)
2019ex 413 . . . 4 (((Β¬ 𝐴 ∈ Fin ∧ 𝐡 ∈ Fin) ∧ (𝑐 βŠ† 𝐴 ∧ 𝑐 β‰ˆ (cardβ€˜π΅))) β†’ (𝑓:𝐡–1-1-onto→𝑐 β†’ 𝑓:𝐡–1-1→𝐴))
2120eximdv 1920 . . 3 (((Β¬ 𝐴 ∈ Fin ∧ 𝐡 ∈ Fin) ∧ (𝑐 βŠ† 𝐴 ∧ 𝑐 β‰ˆ (cardβ€˜π΅))) β†’ (βˆƒπ‘“ 𝑓:𝐡–1-1-onto→𝑐 β†’ βˆƒπ‘“ 𝑓:𝐡–1-1→𝐴))
2215, 21mpd 15 . 2 (((Β¬ 𝐴 ∈ Fin ∧ 𝐡 ∈ Fin) ∧ (𝑐 βŠ† 𝐴 ∧ 𝑐 β‰ˆ (cardβ€˜π΅))) β†’ βˆƒπ‘“ 𝑓:𝐡–1-1→𝐴)
237, 22exlimddv 1938 1 ((Β¬ 𝐴 ∈ Fin ∧ 𝐡 ∈ Fin) β†’ βˆƒπ‘“ 𝑓:𝐡–1-1→𝐴)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆ€wral 3061   βŠ† wss 3947   class class class wbr 5147  β€“1-1β†’wf1 6537  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  Ο‰com 7851   β‰ˆ cen 8932  Fincfn 8935  cardccrd 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930
This theorem is referenced by:  fidomtri  9984  hashdom  14335  erdsze2lem1  34182  eldioph2lem2  41484
  Copyright terms: Public domain W3C validator