MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinffi Structured version   Visualization version   GIF version

Theorem isinffi 9885
Description: An infinite set contains subsets equinumerous to every finite set. Extension of isinf 9149 from finite ordinals to all finite sets. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
isinffi ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐵1-1𝐴)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem isinffi
Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ficardom 9854 . . 3 (𝐵 ∈ Fin → (card‘𝐵) ∈ ω)
2 isinf 9149 . . 3 𝐴 ∈ Fin → ∀𝑎 ∈ ω ∃𝑐(𝑐𝐴𝑐𝑎))
3 breq2 5095 . . . . . 6 (𝑎 = (card‘𝐵) → (𝑐𝑎𝑐 ≈ (card‘𝐵)))
43anbi2d 630 . . . . 5 (𝑎 = (card‘𝐵) → ((𝑐𝐴𝑐𝑎) ↔ (𝑐𝐴𝑐 ≈ (card‘𝐵))))
54exbidv 1922 . . . 4 (𝑎 = (card‘𝐵) → (∃𝑐(𝑐𝐴𝑐𝑎) ↔ ∃𝑐(𝑐𝐴𝑐 ≈ (card‘𝐵))))
65rspcva 3575 . . 3 (((card‘𝐵) ∈ ω ∧ ∀𝑎 ∈ ω ∃𝑐(𝑐𝐴𝑐𝑎)) → ∃𝑐(𝑐𝐴𝑐 ≈ (card‘𝐵)))
71, 2, 6syl2anr 597 . 2 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑐(𝑐𝐴𝑐 ≈ (card‘𝐵)))
8 simprr 772 . . . . . 6 (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) → 𝑐 ≈ (card‘𝐵))
9 ficardid 9855 . . . . . . 7 (𝐵 ∈ Fin → (card‘𝐵) ≈ 𝐵)
109ad2antlr 727 . . . . . 6 (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) → (card‘𝐵) ≈ 𝐵)
11 entr 8928 . . . . . 6 ((𝑐 ≈ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝑐𝐵)
128, 10, 11syl2anc 584 . . . . 5 (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) → 𝑐𝐵)
1312ensymd 8927 . . . 4 (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) → 𝐵𝑐)
14 bren 8879 . . . 4 (𝐵𝑐 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝑐)
1513, 14sylib 218 . . 3 (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) → ∃𝑓 𝑓:𝐵1-1-onto𝑐)
16 f1of1 6762 . . . . . 6 (𝑓:𝐵1-1-onto𝑐𝑓:𝐵1-1𝑐)
17 simplrl 776 . . . . . 6 ((((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) ∧ 𝑓:𝐵1-1-onto𝑐) → 𝑐𝐴)
18 f1ss 6724 . . . . . 6 ((𝑓:𝐵1-1𝑐𝑐𝐴) → 𝑓:𝐵1-1𝐴)
1916, 17, 18syl2an2 686 . . . . 5 ((((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) ∧ 𝑓:𝐵1-1-onto𝑐) → 𝑓:𝐵1-1𝐴)
2019ex 412 . . . 4 (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) → (𝑓:𝐵1-1-onto𝑐𝑓:𝐵1-1𝐴))
2120eximdv 1918 . . 3 (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) → (∃𝑓 𝑓:𝐵1-1-onto𝑐 → ∃𝑓 𝑓:𝐵1-1𝐴))
2215, 21mpd 15 . 2 (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐𝐴𝑐 ≈ (card‘𝐵))) → ∃𝑓 𝑓:𝐵1-1𝐴)
237, 22exlimddv 1936 1 ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐵1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  wral 3047  wss 3902   class class class wbr 5091  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  ωcom 7796  cen 8866  Fincfn 8869  cardccrd 9828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832
This theorem is referenced by:  fidomtri  9886  hashdom  14286  erdsze2lem1  35245  eldioph2lem2  42800
  Copyright terms: Public domain W3C validator