Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isinffi | Structured version Visualization version GIF version |
Description: An infinite set contains subsets equinumerous to every finite set. Extension of isinf 9090 from finite ordinals to all finite sets. (Contributed by Stefan O'Rear, 8-Oct-2014.) |
Ref | Expression |
---|---|
isinffi | ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐵–1-1→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ficardom 9777 | . . 3 ⊢ (𝐵 ∈ Fin → (card‘𝐵) ∈ ω) | |
2 | isinf 9090 | . . 3 ⊢ (¬ 𝐴 ∈ Fin → ∀𝑎 ∈ ω ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎)) | |
3 | breq2 5084 | . . . . . 6 ⊢ (𝑎 = (card‘𝐵) → (𝑐 ≈ 𝑎 ↔ 𝑐 ≈ (card‘𝐵))) | |
4 | 3 | anbi2d 629 | . . . . 5 ⊢ (𝑎 = (card‘𝐵) → ((𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎) ↔ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵)))) |
5 | 4 | exbidv 1921 | . . . 4 ⊢ (𝑎 = (card‘𝐵) → (∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎) ↔ ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵)))) |
6 | 5 | rspcva 3563 | . . 3 ⊢ (((card‘𝐵) ∈ ω ∧ ∀𝑎 ∈ ω ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ 𝑎)) → ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) |
7 | 1, 2, 6 | syl2anr 597 | . 2 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑐(𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) |
8 | simprr 770 | . . . . . 6 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → 𝑐 ≈ (card‘𝐵)) | |
9 | ficardid 9778 | . . . . . . 7 ⊢ (𝐵 ∈ Fin → (card‘𝐵) ≈ 𝐵) | |
10 | 9 | ad2antlr 724 | . . . . . 6 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → (card‘𝐵) ≈ 𝐵) |
11 | entr 8832 | . . . . . 6 ⊢ ((𝑐 ≈ (card‘𝐵) ∧ (card‘𝐵) ≈ 𝐵) → 𝑐 ≈ 𝐵) | |
12 | 8, 10, 11 | syl2anc 584 | . . . . 5 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → 𝑐 ≈ 𝐵) |
13 | 12 | ensymd 8831 | . . . 4 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → 𝐵 ≈ 𝑐) |
14 | bren 8779 | . . . 4 ⊢ (𝐵 ≈ 𝑐 ↔ ∃𝑓 𝑓:𝐵–1-1-onto→𝑐) | |
15 | 13, 14 | sylib 217 | . . 3 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → ∃𝑓 𝑓:𝐵–1-1-onto→𝑐) |
16 | f1of1 6745 | . . . . . 6 ⊢ (𝑓:𝐵–1-1-onto→𝑐 → 𝑓:𝐵–1-1→𝑐) | |
17 | simplrl 774 | . . . . . 6 ⊢ ((((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) ∧ 𝑓:𝐵–1-1-onto→𝑐) → 𝑐 ⊆ 𝐴) | |
18 | f1ss 6706 | . . . . . 6 ⊢ ((𝑓:𝐵–1-1→𝑐 ∧ 𝑐 ⊆ 𝐴) → 𝑓:𝐵–1-1→𝐴) | |
19 | 16, 17, 18 | syl2an2 683 | . . . . 5 ⊢ ((((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) ∧ 𝑓:𝐵–1-1-onto→𝑐) → 𝑓:𝐵–1-1→𝐴) |
20 | 19 | ex 413 | . . . 4 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → (𝑓:𝐵–1-1-onto→𝑐 → 𝑓:𝐵–1-1→𝐴)) |
21 | 20 | eximdv 1917 | . . 3 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → (∃𝑓 𝑓:𝐵–1-1-onto→𝑐 → ∃𝑓 𝑓:𝐵–1-1→𝐴)) |
22 | 15, 21 | mpd 15 | . 2 ⊢ (((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑐 ⊆ 𝐴 ∧ 𝑐 ≈ (card‘𝐵))) → ∃𝑓 𝑓:𝐵–1-1→𝐴) |
23 | 7, 22 | exlimddv 1935 | 1 ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑓 𝑓:𝐵–1-1→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1538 ∃wex 1778 ∈ wcel 2103 ∀wral 3060 ⊆ wss 3891 class class class wbr 5080 –1-1→wf1 6455 –1-1-onto→wf1o 6457 ‘cfv 6458 ωcom 7748 ≈ cen 8766 Fincfn 8769 cardccrd 9751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1968 ax-7 2008 ax-8 2105 ax-9 2113 ax-10 2134 ax-11 2151 ax-12 2168 ax-ext 2706 ax-sep 5231 ax-nul 5238 ax-pow 5296 ax-pr 5360 ax-un 7621 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2713 df-cleq 2727 df-clel 2813 df-nfc 2885 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3340 df-rab 3357 df-v 3438 df-sbc 3721 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4844 df-int 4886 df-br 5081 df-opab 5143 df-mpt 5164 df-tr 5198 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-om 7749 df-1o 8332 df-er 8534 df-en 8770 df-dom 8771 df-sdom 8772 df-fin 8773 df-card 9755 |
This theorem is referenced by: fidomtri 9809 hashdom 14153 erdsze2lem1 33261 eldioph2lem2 40791 |
Copyright terms: Public domain | W3C validator |