MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domssex2 Structured version   Visualization version   GIF version

Theorem domssex2 9139
Description: A corollary of disjenex 9137. If 𝐹 is an injection from 𝐴 to 𝐡 then there is a right inverse 𝑔 of 𝐹 from 𝐡 to a superset of 𝐴. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
domssex2 ((𝐹:𝐴–1-1→𝐡 ∧ 𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ βˆƒπ‘”(𝑔:𝐡–1-1β†’V ∧ (𝑔 ∘ 𝐹) = ( I β†Ύ 𝐴)))
Distinct variable groups:   𝐴,𝑔   𝐡,𝑔   𝑔,𝐹
Allowed substitution hints:   𝑉(𝑔)   π‘Š(𝑔)

Proof of Theorem domssex2
StepHypRef Expression
1 f1f 6781 . . . . 5 (𝐹:𝐴–1-1→𝐡 β†’ 𝐹:𝐴⟢𝐡)
2 fex2 7923 . . . . 5 ((𝐹:𝐴⟢𝐡 ∧ 𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ 𝐹 ∈ V)
31, 2syl3an1 1160 . . . 4 ((𝐹:𝐴–1-1→𝐡 ∧ 𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ 𝐹 ∈ V)
4 f1stres 7998 . . . . 5 (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴})):((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴})⟢(𝐡 βˆ– ran 𝐹)
5 difexg 5320 . . . . . . 7 (𝐡 ∈ π‘Š β†’ (𝐡 βˆ– ran 𝐹) ∈ V)
653ad2ant3 1132 . . . . . 6 ((𝐹:𝐴–1-1→𝐡 ∧ 𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (𝐡 βˆ– ran 𝐹) ∈ V)
7 snex 5424 . . . . . 6 {𝒫 βˆͺ ran 𝐴} ∈ V
8 xpexg 7734 . . . . . 6 (((𝐡 βˆ– ran 𝐹) ∈ V ∧ {𝒫 βˆͺ ran 𝐴} ∈ V) β†’ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}) ∈ V)
96, 7, 8sylancl 585 . . . . 5 ((𝐹:𝐴–1-1→𝐡 ∧ 𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}) ∈ V)
10 fex2 7923 . . . . 5 (((1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴})):((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴})⟢(𝐡 βˆ– ran 𝐹) ∧ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}) ∈ V ∧ (𝐡 βˆ– ran 𝐹) ∈ V) β†’ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴})) ∈ V)
114, 9, 6, 10mp3an2i 1462 . . . 4 ((𝐹:𝐴–1-1→𝐡 ∧ 𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴})) ∈ V)
12 unexg 7733 . . . 4 ((𝐹 ∈ V ∧ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴})) ∈ V) β†’ (𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) ∈ V)
133, 11, 12syl2anc 583 . . 3 ((𝐹:𝐴–1-1→𝐡 ∧ 𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) ∈ V)
14 cnvexg 7914 . . 3 ((𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) ∈ V β†’ β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) ∈ V)
1513, 14syl 17 . 2 ((𝐹:𝐴–1-1→𝐡 ∧ 𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) ∈ V)
16 eqid 2726 . . . . . . 7 β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) = β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴})))
1716domss2 9138 . . . . . 6 ((𝐹:𝐴–1-1→𝐡 ∧ 𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))):𝐡–1-1-ontoβ†’ran β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) ∧ 𝐴 βŠ† ran β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) ∧ (β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) ∘ 𝐹) = ( I β†Ύ 𝐴)))
1817simp1d 1139 . . . . 5 ((𝐹:𝐴–1-1→𝐡 ∧ 𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))):𝐡–1-1-ontoβ†’ran β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))))
19 f1of1 6826 . . . . 5 (β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))):𝐡–1-1-ontoβ†’ran β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) β†’ β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))):𝐡–1-1β†’ran β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))))
2018, 19syl 17 . . . 4 ((𝐹:𝐴–1-1→𝐡 ∧ 𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))):𝐡–1-1β†’ran β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))))
21 ssv 4001 . . . 4 ran β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) βŠ† V
22 f1ss 6787 . . . 4 ((β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))):𝐡–1-1β†’ran β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) ∧ ran β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) βŠ† V) β†’ β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))):𝐡–1-1β†’V)
2320, 21, 22sylancl 585 . . 3 ((𝐹:𝐴–1-1→𝐡 ∧ 𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))):𝐡–1-1β†’V)
2417simp3d 1141 . . 3 ((𝐹:𝐴–1-1→𝐡 ∧ 𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) ∘ 𝐹) = ( I β†Ύ 𝐴))
2523, 24jca 511 . 2 ((𝐹:𝐴–1-1→𝐡 ∧ 𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ (β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))):𝐡–1-1β†’V ∧ (β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) ∘ 𝐹) = ( I β†Ύ 𝐴)))
26 f1eq1 6776 . . 3 (𝑔 = β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) β†’ (𝑔:𝐡–1-1β†’V ↔ β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))):𝐡–1-1β†’V))
27 coeq1 5851 . . . 4 (𝑔 = β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) β†’ (𝑔 ∘ 𝐹) = (β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) ∘ 𝐹))
2827eqeq1d 2728 . . 3 (𝑔 = β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) β†’ ((𝑔 ∘ 𝐹) = ( I β†Ύ 𝐴) ↔ (β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) ∘ 𝐹) = ( I β†Ύ 𝐴)))
2926, 28anbi12d 630 . 2 (𝑔 = β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) β†’ ((𝑔:𝐡–1-1β†’V ∧ (𝑔 ∘ 𝐹) = ( I β†Ύ 𝐴)) ↔ (β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))):𝐡–1-1β†’V ∧ (β—‘(𝐹 βˆͺ (1st β†Ύ ((𝐡 βˆ– ran 𝐹) Γ— {𝒫 βˆͺ ran 𝐴}))) ∘ 𝐹) = ( I β†Ύ 𝐴))))
3015, 25, 29spcedv 3582 1 ((𝐹:𝐴–1-1→𝐡 ∧ 𝐴 ∈ 𝑉 ∧ 𝐡 ∈ π‘Š) β†’ βˆƒπ‘”(𝑔:𝐡–1-1β†’V ∧ (𝑔 ∘ 𝐹) = ( I β†Ύ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  Vcvv 3468   βˆ– cdif 3940   βˆͺ cun 3941   βŠ† wss 3943  π’« cpw 4597  {csn 4623  βˆͺ cuni 4902   I cid 5566   Γ— cxp 5667  β—‘ccnv 5668  ran crn 5670   β†Ύ cres 5671   ∘ ccom 5673  βŸΆwf 6533  β€“1-1β†’wf1 6534  β€“1-1-ontoβ†’wf1o 6536  1st c1st 7972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-1st 7974  df-2nd 7975  df-en 8942
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator