Proof of Theorem domssex2
| Step | Hyp | Ref
| Expression |
| 1 | | f1f 6803 |
. . . . 5
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) |
| 2 | | fex2 7959 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
| 3 | 1, 2 | syl3an1 1163 |
. . . 4
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
| 4 | | f1stres 8039 |
. . . . 5
⊢
(1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})):((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})⟶(𝐵 ∖ ran 𝐹) |
| 5 | | difexg 5328 |
. . . . . . 7
⊢ (𝐵 ∈ 𝑊 → (𝐵 ∖ ran 𝐹) ∈ V) |
| 6 | 5 | 3ad2ant3 1135 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 ∖ ran 𝐹) ∈ V) |
| 7 | | snex 5435 |
. . . . . 6
⊢
{𝒫 ∪ ran 𝐴} ∈ V |
| 8 | | xpexg 7771 |
. . . . . 6
⊢ (((𝐵 ∖ ran 𝐹) ∈ V ∧ {𝒫 ∪ ran 𝐴} ∈ V) → ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}) ∈ V) |
| 9 | 6, 7, 8 | sylancl 586 |
. . . . 5
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}) ∈ V) |
| 10 | | fex2 7959 |
. . . . 5
⊢
(((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})):((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})⟶(𝐵 ∖ ran 𝐹) ∧ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}) ∈ V ∧ (𝐵 ∖ ran 𝐹) ∈ V) → (1st ↾
((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) ∈ V) |
| 11 | 4, 9, 6, 10 | mp3an2i 1467 |
. . . 4
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})) ∈ V) |
| 12 | | unexg 7764 |
. . . 4
⊢ ((𝐹 ∈ V ∧ (1st
↾ ((𝐵 ∖ ran
𝐹) × {𝒫 ∪ ran 𝐴})) ∈ V) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ∈ V) |
| 13 | 3, 11, 12 | syl2anc 584 |
. . 3
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ∈ V) |
| 14 | | cnvexg 7947 |
. . 3
⊢ ((𝐹 ∪ (1st ↾
((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ∈ V → ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ∈ V) |
| 15 | 13, 14 | syl 17 |
. 2
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ∈ V) |
| 16 | | eqid 2736 |
. . . . . . 7
⊢ ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) = ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) |
| 17 | 16 | domss2 9177 |
. . . . . 6
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):𝐵–1-1-onto→ran
◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ∧ 𝐴 ⊆ ran ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ∧ (◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ∘ 𝐹) = ( I ↾ 𝐴))) |
| 18 | 17 | simp1d 1142 |
. . . . 5
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):𝐵–1-1-onto→ran
◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})))) |
| 19 | | f1of1 6846 |
. . . . 5
⊢ (◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):𝐵–1-1-onto→ran
◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) → ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):𝐵–1-1→ran ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})))) |
| 20 | 18, 19 | syl 17 |
. . . 4
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):𝐵–1-1→ran ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴})))) |
| 21 | | ssv 4007 |
. . . 4
⊢ ran ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ⊆ V |
| 22 | | f1ss 6808 |
. . . 4
⊢ ((◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):𝐵–1-1→ran ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ∧ ran ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ⊆ V) → ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):𝐵–1-1→V) |
| 23 | 20, 21, 22 | sylancl 586 |
. . 3
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):𝐵–1-1→V) |
| 24 | 17 | simp3d 1144 |
. . 3
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ∘ 𝐹) = ( I ↾ 𝐴)) |
| 25 | 23, 24 | jca 511 |
. 2
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):𝐵–1-1→V ∧ (◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ∘ 𝐹) = ( I ↾ 𝐴))) |
| 26 | | f1eq1 6798 |
. . 3
⊢ (𝑔 = ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) → (𝑔:𝐵–1-1→V ↔ ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):𝐵–1-1→V)) |
| 27 | | coeq1 5867 |
. . . 4
⊢ (𝑔 = ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) → (𝑔 ∘ 𝐹) = (◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ∘ 𝐹)) |
| 28 | 27 | eqeq1d 2738 |
. . 3
⊢ (𝑔 = ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) → ((𝑔 ∘ 𝐹) = ( I ↾ 𝐴) ↔ (◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ∘ 𝐹) = ( I ↾ 𝐴))) |
| 29 | 26, 28 | anbi12d 632 |
. 2
⊢ (𝑔 = ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) → ((𝑔:𝐵–1-1→V ∧ (𝑔 ∘ 𝐹) = ( I ↾ 𝐴)) ↔ (◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))):𝐵–1-1→V ∧ (◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ∘ 𝐹) = ( I ↾ 𝐴)))) |
| 30 | 15, 25, 29 | spcedv 3597 |
1
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑔(𝑔:𝐵–1-1→V ∧ (𝑔 ∘ 𝐹) = ( I ↾ 𝐴))) |