MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domssex2 Structured version   Visualization version   GIF version

Theorem domssex2 9081
Description: A corollary of disjenex 9079. If 𝐹 is an injection from 𝐴 to 𝐵 then there is a right inverse 𝑔 of 𝐹 from 𝐵 to a superset of 𝐴. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
domssex2 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ∃𝑔(𝑔:𝐵1-1→V ∧ (𝑔𝐹) = ( I ↾ 𝐴)))
Distinct variable groups:   𝐴,𝑔   𝐵,𝑔   𝑔,𝐹
Allowed substitution hints:   𝑉(𝑔)   𝑊(𝑔)

Proof of Theorem domssex2
StepHypRef Expression
1 f1f 6738 . . . . 5 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
2 fex2 7870 . . . . 5 ((𝐹:𝐴𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
31, 2syl3an1 1163 . . . 4 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → 𝐹 ∈ V)
4 f1stres 7945 . . . . 5 (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})):((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})⟶(𝐵 ∖ ran 𝐹)
5 difexg 5284 . . . . . . 7 (𝐵𝑊 → (𝐵 ∖ ran 𝐹) ∈ V)
653ad2ant3 1135 . . . . . 6 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐵 ∖ ran 𝐹) ∈ V)
7 snex 5388 . . . . . 6 {𝒫 ran 𝐴} ∈ V
8 xpexg 7684 . . . . . 6 (((𝐵 ∖ ran 𝐹) ∈ V ∧ {𝒫 ran 𝐴} ∈ V) → ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}) ∈ V)
96, 7, 8sylancl 586 . . . . 5 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}) ∈ V)
10 fex2 7870 . . . . 5 (((1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})):((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})⟶(𝐵 ∖ ran 𝐹) ∧ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}) ∈ V ∧ (𝐵 ∖ ran 𝐹) ∈ V) → (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ∈ V)
114, 9, 6, 10mp3an2i 1466 . . . 4 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ∈ V)
12 unexg 7683 . . . 4 ((𝐹 ∈ V ∧ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})) ∈ V) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∈ V)
133, 11, 12syl2anc 584 . . 3 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∈ V)
14 cnvexg 7861 . . 3 ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∈ V → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∈ V)
1513, 14syl 17 . 2 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∈ V)
16 eqid 2736 . . . . . . 7 (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) = (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴})))
1716domss2 9080 . . . . . 6 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1-onto→ran (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∧ 𝐴 ⊆ ran (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∧ ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∘ 𝐹) = ( I ↾ 𝐴)))
1817simp1d 1142 . . . . 5 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1-onto→ran (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))))
19 f1of1 6783 . . . . 5 ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1-onto→ran (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1→ran (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))))
2018, 19syl 17 . . . 4 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1→ran (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))))
21 ssv 3968 . . . 4 ran (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ⊆ V
22 f1ss 6744 . . . 4 (((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1→ran (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∧ ran (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ⊆ V) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1→V)
2320, 21, 22sylancl 586 . . 3 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1→V)
2417simp3d 1144 . . 3 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∘ 𝐹) = ( I ↾ 𝐴))
2523, 24jca 512 . 2 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1→V ∧ ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∘ 𝐹) = ( I ↾ 𝐴)))
26 f1eq1 6733 . . 3 (𝑔 = (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) → (𝑔:𝐵1-1→V ↔ (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1→V))
27 coeq1 5813 . . . 4 (𝑔 = (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) → (𝑔𝐹) = ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∘ 𝐹))
2827eqeq1d 2738 . . 3 (𝑔 = (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) → ((𝑔𝐹) = ( I ↾ 𝐴) ↔ ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∘ 𝐹) = ( I ↾ 𝐴)))
2926, 28anbi12d 631 . 2 (𝑔 = (𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) → ((𝑔:𝐵1-1→V ∧ (𝑔𝐹) = ( I ↾ 𝐴)) ↔ ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))):𝐵1-1→V ∧ ((𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ran 𝐴}))) ∘ 𝐹) = ( I ↾ 𝐴))))
3015, 25, 29spcedv 3557 1 ((𝐹:𝐴1-1𝐵𝐴𝑉𝐵𝑊) → ∃𝑔(𝑔:𝐵1-1→V ∧ (𝑔𝐹) = ( I ↾ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  Vcvv 3445  cdif 3907  cun 3908  wss 3910  𝒫 cpw 4560  {csn 4586   cuni 4865   I cid 5530   × cxp 5631  ccnv 5632  ran crn 5634  cres 5635  ccom 5637  wf 6492  1-1wf1 6493  1-1-ontowf1o 6495  1st c1st 7919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-1st 7921  df-2nd 7922  df-en 8884
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator