| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > s1f1 | Structured version Visualization version GIF version | ||
| Description: Conditions for a length 1 string to be a one-to-one function. (Contributed by Thierry Arnoux, 11-Dec-2023.) |
| Ref | Expression |
|---|---|
| s1f1.1 | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| s1f1 | ⊢ (𝜑 → 〈“𝐼”〉:dom 〈“𝐼”〉–1-1→𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12525 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 3 | s1f1.1 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
| 4 | f1osng 6870 | . . . . 5 ⊢ ((0 ∈ ℕ0 ∧ 𝐼 ∈ 𝐷) → {〈0, 𝐼〉}:{0}–1-1-onto→{𝐼}) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . 4 ⊢ (𝜑 → {〈0, 𝐼〉}:{0}–1-1-onto→{𝐼}) |
| 6 | f1of1 6828 | . . . 4 ⊢ ({〈0, 𝐼〉}:{0}–1-1-onto→{𝐼} → {〈0, 𝐼〉}:{0}–1-1→{𝐼}) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → {〈0, 𝐼〉}:{0}–1-1→{𝐼}) |
| 8 | 3 | snssd 4791 | . . 3 ⊢ (𝜑 → {𝐼} ⊆ 𝐷) |
| 9 | f1ss 6790 | . . 3 ⊢ (({〈0, 𝐼〉}:{0}–1-1→{𝐼} ∧ {𝐼} ⊆ 𝐷) → {〈0, 𝐼〉}:{0}–1-1→𝐷) | |
| 10 | 7, 8, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → {〈0, 𝐼〉}:{0}–1-1→𝐷) |
| 11 | s1val 14619 | . . . 4 ⊢ (𝐼 ∈ 𝐷 → 〈“𝐼”〉 = {〈0, 𝐼〉}) | |
| 12 | 3, 11 | syl 17 | . . 3 ⊢ (𝜑 → 〈“𝐼”〉 = {〈0, 𝐼〉}) |
| 13 | s1dm 14629 | . . . 4 ⊢ dom 〈“𝐼”〉 = {0} | |
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → dom 〈“𝐼”〉 = {0}) |
| 15 | eqidd 2735 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐷) | |
| 16 | 12, 14, 15 | f1eq123d 6821 | . 2 ⊢ (𝜑 → (〈“𝐼”〉:dom 〈“𝐼”〉–1-1→𝐷 ↔ {〈0, 𝐼〉}:{0}–1-1→𝐷)) |
| 17 | 10, 16 | mpbird 257 | 1 ⊢ (𝜑 → 〈“𝐼”〉:dom 〈“𝐼”〉–1-1→𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3933 {csn 4608 〈cop 4614 dom cdm 5667 –1-1→wf1 6539 –1-1-onto→wf1o 6541 0cc0 11138 ℕ0cn0 12510 〈“cs1 14616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-fzo 13678 df-hash 14353 df-word 14536 df-s1 14617 |
| This theorem is referenced by: cycpmco2f1 33086 |
| Copyright terms: Public domain | W3C validator |