MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdomfi2 Structured version   Visualization version   GIF version

Theorem ssdomfi2 9021
Description: A set dominates its finite subsets, proved without using the Axiom of Power Sets (unlike ssdomg 8821). (Contributed by BTernaryTau, 24-Nov-2024.)
Assertion
Ref Expression
ssdomfi2 ((𝐴 ∈ Fin ∧ 𝐵𝑉𝐴𝐵) → 𝐴𝐵)

Proof of Theorem ssdomfi2
StepHypRef Expression
1 f1oi 6784 . . . 4 ( I ↾ 𝐴):𝐴1-1-onto𝐴
2 f1of1 6745 . . . 4 (( I ↾ 𝐴):𝐴1-1-onto𝐴 → ( I ↾ 𝐴):𝐴1-1𝐴)
31, 2ax-mp 5 . . 3 ( I ↾ 𝐴):𝐴1-1𝐴
4 f1ss 6706 . . 3 ((( I ↾ 𝐴):𝐴1-1𝐴𝐴𝐵) → ( I ↾ 𝐴):𝐴1-1𝐵)
53, 4mpan 688 . 2 (𝐴𝐵 → ( I ↾ 𝐴):𝐴1-1𝐵)
6 f1domfi2 9006 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ( I ↾ 𝐴):𝐴1-1𝐵) → 𝐴𝐵)
75, 6syl3an3 1165 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉𝐴𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wcel 2104  wss 3892   class class class wbr 5081   I cid 5499  cres 5602  1-1wf1 6455  1-1-ontowf1o 6457  cdom 8762  Fincfn 8764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-om 7745  df-1o 8328  df-en 8765  df-dom 8766  df-fin 8768
This theorem is referenced by:  sucdom2  9027  nndomog  9037
  Copyright terms: Public domain W3C validator