![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdomfi2 | Structured version Visualization version GIF version |
Description: A set dominates its finite subsets, proved without using the Axiom of Power Sets (unlike ssdomg 9045). (Contributed by BTernaryTau, 24-Nov-2024.) |
Ref | Expression |
---|---|
ssdomfi2 | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ≼ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6891 | . . . 4 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
2 | f1of1 6852 | . . . 4 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 → ( I ↾ 𝐴):𝐴–1-1→𝐴) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ( I ↾ 𝐴):𝐴–1-1→𝐴 |
4 | f1ss 6814 | . . 3 ⊢ ((( I ↾ 𝐴):𝐴–1-1→𝐴 ∧ 𝐴 ⊆ 𝐵) → ( I ↾ 𝐴):𝐴–1-1→𝐵) | |
5 | 3, 4 | mpan 690 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
6 | f1domfi2 9226 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ( I ↾ 𝐴):𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | |
7 | 5, 6 | syl3an3 1165 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ≼ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2107 ⊆ wss 3964 class class class wbr 5149 I cid 5583 ↾ cres 5692 –1-1→wf1 6563 –1-1-onto→wf1o 6565 ≼ cdom 8988 Fincfn 8990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-om 7892 df-1o 8511 df-en 8991 df-dom 8992 df-fin 8994 |
This theorem is referenced by: sucdom2 9247 nndomog 9257 nnsdomg 9339 fisdomnn 42276 |
Copyright terms: Public domain | W3C validator |