MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssdomfi2 Structured version   Visualization version   GIF version

Theorem ssdomfi2 8957
Description: A set dominates its finite subsets, proved without using the Axiom of Power Sets (unlike ssdomg 8761). (Contributed by BTernaryTau, 24-Nov-2024.)
Assertion
Ref Expression
ssdomfi2 ((𝐴 ∈ Fin ∧ 𝐵𝑉𝐴𝐵) → 𝐴𝐵)

Proof of Theorem ssdomfi2
StepHypRef Expression
1 f1oi 6750 . . . 4 ( I ↾ 𝐴):𝐴1-1-onto𝐴
2 f1of1 6712 . . . 4 (( I ↾ 𝐴):𝐴1-1-onto𝐴 → ( I ↾ 𝐴):𝐴1-1𝐴)
31, 2ax-mp 5 . . 3 ( I ↾ 𝐴):𝐴1-1𝐴
4 f1ss 6673 . . 3 ((( I ↾ 𝐴):𝐴1-1𝐴𝐴𝐵) → ( I ↾ 𝐴):𝐴1-1𝐵)
53, 4mpan 687 . 2 (𝐴𝐵 → ( I ↾ 𝐴):𝐴1-1𝐵)
6 f1domfi2 8942 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ( I ↾ 𝐴):𝐴1-1𝐵) → 𝐴𝐵)
75, 6syl3an3 1164 1 ((𝐴 ∈ Fin ∧ 𝐵𝑉𝐴𝐵) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2110  wss 3892   class class class wbr 5079   I cid 5488  cres 5591  1-1wf1 6428  1-1-ontowf1o 6430  cdom 8706  Fincfn 8708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-om 7702  df-1o 8282  df-en 8709  df-dom 8710  df-fin 8712
This theorem is referenced by:  nndomog  8973
  Copyright terms: Public domain W3C validator