| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssdomfi2 | Structured version Visualization version GIF version | ||
| Description: A set dominates its finite subsets, proved without using the Axiom of Power Sets (unlike ssdomg 8922). (Contributed by BTernaryTau, 24-Nov-2024.) |
| Ref | Expression |
|---|---|
| ssdomfi2 | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ≼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 6801 | . . . 4 ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | |
| 2 | f1of1 6762 | . . . 4 ⊢ (( I ↾ 𝐴):𝐴–1-1-onto→𝐴 → ( I ↾ 𝐴):𝐴–1-1→𝐴) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ( I ↾ 𝐴):𝐴–1-1→𝐴 |
| 4 | f1ss 6724 | . . 3 ⊢ ((( I ↾ 𝐴):𝐴–1-1→𝐴 ∧ 𝐴 ⊆ 𝐵) → ( I ↾ 𝐴):𝐴–1-1→𝐵) | |
| 5 | 3, 4 | mpan 690 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ( I ↾ 𝐴):𝐴–1-1→𝐵) |
| 6 | f1domfi2 9091 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ ( I ↾ 𝐴):𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | |
| 7 | 5, 6 | syl3an3 1165 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ≼ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5089 I cid 5508 ↾ cres 5616 –1-1→wf1 6478 –1-1-onto→wf1o 6480 ≼ cdom 8867 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-en 8870 df-dom 8871 df-fin 8873 |
| This theorem is referenced by: sucdom2 9112 nndomog 9122 nnsdomg 9183 fisdomnn 42285 |
| Copyright terms: Public domain | W3C validator |