MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclssscls Structured version   Visualization version   GIF version

Theorem fclssscls 24047
Description: The set of cluster points is a subset of the closure of any filter element. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclssscls (𝑆𝐹 → (𝐽 fClus 𝐹) ⊆ ((cls‘𝐽)‘𝑆))

Proof of Theorem fclssscls
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . 5 𝐽 = 𝐽
21isfcls 24038 . . . 4 (𝑥 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐽) ∧ ∀𝑠𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
32simp3bi 1147 . . 3 (𝑥 ∈ (𝐽 fClus 𝐹) → ∀𝑠𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠))
4 fveq2 6920 . . . . 5 (𝑠 = 𝑆 → ((cls‘𝐽)‘𝑠) = ((cls‘𝐽)‘𝑆))
54eleq2d 2830 . . . 4 (𝑠 = 𝑆 → (𝑥 ∈ ((cls‘𝐽)‘𝑠) ↔ 𝑥 ∈ ((cls‘𝐽)‘𝑆)))
65rspcv 3631 . . 3 (𝑆𝐹 → (∀𝑠𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠) → 𝑥 ∈ ((cls‘𝐽)‘𝑆)))
73, 6syl5 34 . 2 (𝑆𝐹 → (𝑥 ∈ (𝐽 fClus 𝐹) → 𝑥 ∈ ((cls‘𝐽)‘𝑆)))
87ssrdv 4014 1 (𝑆𝐹 → (𝐽 fClus 𝐹) ⊆ ((cls‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wral 3067  wss 3976   cuni 4931  cfv 6573  (class class class)co 7448  Topctop 22920  clsccl 23047  Filcfil 23874   fClus cfcls 23965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-fbas 21384  df-fil 23875  df-fcls 23970
This theorem is referenced by:  fclscmp  24059
  Copyright terms: Public domain W3C validator