![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fclssscls | Structured version Visualization version GIF version |
Description: The set of cluster points is a subset of the closure of any filter element. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
Ref | Expression |
---|---|
fclssscls | ⊢ (𝑆 ∈ 𝐹 → (𝐽 fClus 𝐹) ⊆ ((cls‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | isfcls 24038 | . . . 4 ⊢ (𝑥 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽) ∧ ∀𝑠 ∈ 𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠))) |
3 | 2 | simp3bi 1147 | . . 3 ⊢ (𝑥 ∈ (𝐽 fClus 𝐹) → ∀𝑠 ∈ 𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠)) |
4 | fveq2 6920 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((cls‘𝐽)‘𝑠) = ((cls‘𝐽)‘𝑆)) | |
5 | 4 | eleq2d 2830 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑥 ∈ ((cls‘𝐽)‘𝑠) ↔ 𝑥 ∈ ((cls‘𝐽)‘𝑆))) |
6 | 5 | rspcv 3631 | . . 3 ⊢ (𝑆 ∈ 𝐹 → (∀𝑠 ∈ 𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠) → 𝑥 ∈ ((cls‘𝐽)‘𝑆))) |
7 | 3, 6 | syl5 34 | . 2 ⊢ (𝑆 ∈ 𝐹 → (𝑥 ∈ (𝐽 fClus 𝐹) → 𝑥 ∈ ((cls‘𝐽)‘𝑆))) |
8 | 7 | ssrdv 4014 | 1 ⊢ (𝑆 ∈ 𝐹 → (𝐽 fClus 𝐹) ⊆ ((cls‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ∪ cuni 4931 ‘cfv 6573 (class class class)co 7448 Topctop 22920 clsccl 23047 Filcfil 23874 fClus cfcls 23965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-fbas 21384 df-fil 23875 df-fcls 23970 |
This theorem is referenced by: fclscmp 24059 |
Copyright terms: Public domain | W3C validator |