| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fclssscls | Structured version Visualization version GIF version | ||
| Description: The set of cluster points is a subset of the closure of any filter element. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
| Ref | Expression |
|---|---|
| fclssscls | ⊢ (𝑆 ∈ 𝐹 → (𝐽 fClus 𝐹) ⊆ ((cls‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | isfcls 23924 | . . . 4 ⊢ (𝑥 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽) ∧ ∀𝑠 ∈ 𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠))) |
| 3 | 2 | simp3bi 1147 | . . 3 ⊢ (𝑥 ∈ (𝐽 fClus 𝐹) → ∀𝑠 ∈ 𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠)) |
| 4 | fveq2 6822 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((cls‘𝐽)‘𝑠) = ((cls‘𝐽)‘𝑆)) | |
| 5 | 4 | eleq2d 2817 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑥 ∈ ((cls‘𝐽)‘𝑠) ↔ 𝑥 ∈ ((cls‘𝐽)‘𝑆))) |
| 6 | 5 | rspcv 3568 | . . 3 ⊢ (𝑆 ∈ 𝐹 → (∀𝑠 ∈ 𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠) → 𝑥 ∈ ((cls‘𝐽)‘𝑆))) |
| 7 | 3, 6 | syl5 34 | . 2 ⊢ (𝑆 ∈ 𝐹 → (𝑥 ∈ (𝐽 fClus 𝐹) → 𝑥 ∈ ((cls‘𝐽)‘𝑆))) |
| 8 | 7 | ssrdv 3935 | 1 ⊢ (𝑆 ∈ 𝐹 → (𝐽 fClus 𝐹) ⊆ ((cls‘𝐽)‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 ∪ cuni 4856 ‘cfv 6481 (class class class)co 7346 Topctop 22808 clsccl 22933 Filcfil 23760 fClus cfcls 23851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-fbas 21288 df-fil 23761 df-fcls 23856 |
| This theorem is referenced by: fclscmp 23945 |
| Copyright terms: Public domain | W3C validator |