MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclssscls Structured version   Visualization version   GIF version

Theorem fclssscls 23905
Description: The set of cluster points is a subset of the closure of any filter element. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclssscls (𝑆𝐹 → (𝐽 fClus 𝐹) ⊆ ((cls‘𝐽)‘𝑆))

Proof of Theorem fclssscls
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . 5 𝐽 = 𝐽
21isfcls 23896 . . . 4 (𝑥 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐽) ∧ ∀𝑠𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
32simp3bi 1147 . . 3 (𝑥 ∈ (𝐽 fClus 𝐹) → ∀𝑠𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠))
4 fveq2 6858 . . . . 5 (𝑠 = 𝑆 → ((cls‘𝐽)‘𝑠) = ((cls‘𝐽)‘𝑆))
54eleq2d 2814 . . . 4 (𝑠 = 𝑆 → (𝑥 ∈ ((cls‘𝐽)‘𝑠) ↔ 𝑥 ∈ ((cls‘𝐽)‘𝑆)))
65rspcv 3584 . . 3 (𝑆𝐹 → (∀𝑠𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠) → 𝑥 ∈ ((cls‘𝐽)‘𝑆)))
73, 6syl5 34 . 2 (𝑆𝐹 → (𝑥 ∈ (𝐽 fClus 𝐹) → 𝑥 ∈ ((cls‘𝐽)‘𝑆)))
87ssrdv 3952 1 (𝑆𝐹 → (𝐽 fClus 𝐹) ⊆ ((cls‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044  wss 3914   cuni 4871  cfv 6511  (class class class)co 7387  Topctop 22780  clsccl 22905  Filcfil 23732   fClus cfcls 23823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-fbas 21261  df-fil 23733  df-fcls 23828
This theorem is referenced by:  fclscmp  23917
  Copyright terms: Public domain W3C validator