MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfcls Structured version   Visualization version   GIF version

Theorem isfcls 23925
Description: A cluster point of a filter. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsval.x 𝑋 = 𝐽
Assertion
Ref Expression
isfcls (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   𝑋,𝑠   𝐽,𝑠

Proof of Theorem isfcls
Dummy variables 𝑓 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anass 468 . 2 ((((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ (𝑋 = 𝐹 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
2 fvssunirn 6853 . . . . . . . 8 (Fil‘𝑋) ⊆ ran Fil
32sseli 3930 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ran Fil)
4 filunibas 23797 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
54eqcomd 2737 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → 𝑋 = 𝐹)
63, 5jca 511 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ran Fil ∧ 𝑋 = 𝐹))
7 filunirn 23798 . . . . . . 7 (𝐹 ran Fil ↔ 𝐹 ∈ (Fil‘ 𝐹))
8 fveq2 6822 . . . . . . . . 9 (𝑋 = 𝐹 → (Fil‘𝑋) = (Fil‘ 𝐹))
98eleq2d 2817 . . . . . . . 8 (𝑋 = 𝐹 → (𝐹 ∈ (Fil‘𝑋) ↔ 𝐹 ∈ (Fil‘ 𝐹)))
109biimparc 479 . . . . . . 7 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑋 = 𝐹) → 𝐹 ∈ (Fil‘𝑋))
117, 10sylanb 581 . . . . . 6 ((𝐹 ran Fil ∧ 𝑋 = 𝐹) → 𝐹 ∈ (Fil‘𝑋))
126, 11impbii 209 . . . . 5 (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ran Fil ∧ 𝑋 = 𝐹))
1312anbi2i 623 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) ↔ (𝐽 ∈ Top ∧ (𝐹 ran Fil ∧ 𝑋 = 𝐹)))
1413anbi1i 624 . . 3 (((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ (𝐹 ran Fil ∧ 𝑋 = 𝐹)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
15 df-3an 1088 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
16 anass 468 . . . 4 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) ↔ (𝐽 ∈ Top ∧ (𝐹 ran Fil ∧ 𝑋 = 𝐹)))
1716anbi1i 624 . . 3 ((((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ (𝐹 ran Fil ∧ 𝑋 = 𝐹)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
1814, 15, 173bitr4i 303 . 2 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
19 df-fcls 23857 . . . 4 fClus = (𝑗 ∈ Top, 𝑓 ran Fil ↦ if( 𝑗 = 𝑓, 𝑥𝑓 ((cls‘𝑗)‘𝑥), ∅))
2019elmpocl 7587 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ Top ∧ 𝐹 ran Fil))
21 fclsval.x . . . . . . 7 𝑋 = 𝐽
2221fclsval 23924 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐹)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅))
237, 22sylan2b 594 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐽 fClus 𝐹) = if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅))
2423eleq2d 2817 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ 𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅)))
25 n0i 4290 . . . . . . 7 (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) → ¬ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) = ∅)
26 iffalse 4484 . . . . . . 7 𝑋 = 𝐹 → if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) = ∅)
2725, 26nsyl2 141 . . . . . 6 (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) → 𝑋 = 𝐹)
2827a1i 11 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) → 𝑋 = 𝐹))
2928pm4.71rd 562 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) ↔ (𝑋 = 𝐹𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅))))
30 iftrue 4481 . . . . . . . 8 (𝑋 = 𝐹 → if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) = 𝑠𝐹 ((cls‘𝐽)‘𝑠))
3130adantl 481 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) = 𝑠𝐹 ((cls‘𝐽)‘𝑠))
3231eleq2d 2817 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) ↔ 𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠)))
33 elex 3457 . . . . . . . 8 (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V)
3433a1i 11 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V))
35 filn0 23778 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘ 𝐹) → 𝐹 ≠ ∅)
367, 35sylbi 217 . . . . . . . . . 10 (𝐹 ran Fil → 𝐹 ≠ ∅)
3736ad2antlr 727 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → 𝐹 ≠ ∅)
38 r19.2z 4445 . . . . . . . . . 10 ((𝐹 ≠ ∅ ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))
3938ex 412 . . . . . . . . 9 (𝐹 ≠ ∅ → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
4037, 39syl 17 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
41 elex 3457 . . . . . . . . 9 (𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V)
4241rexlimivw 3129 . . . . . . . 8 (∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V)
4340, 42syl6 35 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V))
44 eliin 4946 . . . . . . . 8 (𝐴 ∈ V → (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
4544a1i 11 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 ∈ V → (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
4634, 43, 45pm5.21ndd 379 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
4732, 46bitrd 279 . . . . 5 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
4847pm5.32da 579 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → ((𝑋 = 𝐹𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅)) ↔ (𝑋 = 𝐹 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
4924, 29, 483bitrd 305 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝑋 = 𝐹 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
5020, 49biadanii 821 . 2 (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ (𝑋 = 𝐹 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
511, 18, 503bitr4ri 304 1 (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  c0 4283  ifcif 4475   cuni 4859   ciin 4942  ran crn 5617  cfv 6481  (class class class)co 7346  Topctop 22809  clsccl 22934  Filcfil 23761   fClus cfcls 23852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-fbas 21289  df-fil 23762  df-fcls 23857
This theorem is referenced by:  fclsfil  23926  fclstop  23927  isfcls2  23929  fclssscls  23934  flimfcls  23942
  Copyright terms: Public domain W3C validator