MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfcls Structured version   Visualization version   GIF version

Theorem isfcls 23068
Description: A cluster point of a filter. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsval.x 𝑋 = 𝐽
Assertion
Ref Expression
isfcls (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   𝑋,𝑠   𝐽,𝑠

Proof of Theorem isfcls
Dummy variables 𝑓 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anass 468 . 2 ((((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ (𝑋 = 𝐹 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
2 fvssunirn 6785 . . . . . . . 8 (Fil‘𝑋) ⊆ ran Fil
32sseli 3913 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ran Fil)
4 filunibas 22940 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
54eqcomd 2744 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → 𝑋 = 𝐹)
63, 5jca 511 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ran Fil ∧ 𝑋 = 𝐹))
7 filunirn 22941 . . . . . . 7 (𝐹 ran Fil ↔ 𝐹 ∈ (Fil‘ 𝐹))
8 fveq2 6756 . . . . . . . . 9 (𝑋 = 𝐹 → (Fil‘𝑋) = (Fil‘ 𝐹))
98eleq2d 2824 . . . . . . . 8 (𝑋 = 𝐹 → (𝐹 ∈ (Fil‘𝑋) ↔ 𝐹 ∈ (Fil‘ 𝐹)))
109biimparc 479 . . . . . . 7 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑋 = 𝐹) → 𝐹 ∈ (Fil‘𝑋))
117, 10sylanb 580 . . . . . 6 ((𝐹 ran Fil ∧ 𝑋 = 𝐹) → 𝐹 ∈ (Fil‘𝑋))
126, 11impbii 208 . . . . 5 (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ran Fil ∧ 𝑋 = 𝐹))
1312anbi2i 622 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) ↔ (𝐽 ∈ Top ∧ (𝐹 ran Fil ∧ 𝑋 = 𝐹)))
1413anbi1i 623 . . 3 (((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ (𝐹 ran Fil ∧ 𝑋 = 𝐹)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
15 df-3an 1087 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
16 anass 468 . . . 4 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) ↔ (𝐽 ∈ Top ∧ (𝐹 ran Fil ∧ 𝑋 = 𝐹)))
1716anbi1i 623 . . 3 ((((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ (𝐹 ran Fil ∧ 𝑋 = 𝐹)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
1814, 15, 173bitr4i 302 . 2 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
19 df-fcls 23000 . . . 4 fClus = (𝑗 ∈ Top, 𝑓 ran Fil ↦ if( 𝑗 = 𝑓, 𝑥𝑓 ((cls‘𝑗)‘𝑥), ∅))
2019elmpocl 7489 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ Top ∧ 𝐹 ran Fil))
21 fclsval.x . . . . . . 7 𝑋 = 𝐽
2221fclsval 23067 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐹)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅))
237, 22sylan2b 593 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐽 fClus 𝐹) = if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅))
2423eleq2d 2824 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ 𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅)))
25 n0i 4264 . . . . . . 7 (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) → ¬ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) = ∅)
26 iffalse 4465 . . . . . . 7 𝑋 = 𝐹 → if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) = ∅)
2725, 26nsyl2 141 . . . . . 6 (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) → 𝑋 = 𝐹)
2827a1i 11 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) → 𝑋 = 𝐹))
2928pm4.71rd 562 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) ↔ (𝑋 = 𝐹𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅))))
30 iftrue 4462 . . . . . . . 8 (𝑋 = 𝐹 → if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) = 𝑠𝐹 ((cls‘𝐽)‘𝑠))
3130adantl 481 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) = 𝑠𝐹 ((cls‘𝐽)‘𝑠))
3231eleq2d 2824 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) ↔ 𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠)))
33 elex 3440 . . . . . . . 8 (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V)
3433a1i 11 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V))
35 filn0 22921 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘ 𝐹) → 𝐹 ≠ ∅)
367, 35sylbi 216 . . . . . . . . . 10 (𝐹 ran Fil → 𝐹 ≠ ∅)
3736ad2antlr 723 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → 𝐹 ≠ ∅)
38 r19.2z 4422 . . . . . . . . . 10 ((𝐹 ≠ ∅ ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))
3938ex 412 . . . . . . . . 9 (𝐹 ≠ ∅ → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
4037, 39syl 17 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
41 elex 3440 . . . . . . . . 9 (𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V)
4241rexlimivw 3210 . . . . . . . 8 (∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V)
4340, 42syl6 35 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V))
44 eliin 4926 . . . . . . . 8 (𝐴 ∈ V → (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
4544a1i 11 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 ∈ V → (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
4634, 43, 45pm5.21ndd 380 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
4732, 46bitrd 278 . . . . 5 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
4847pm5.32da 578 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → ((𝑋 = 𝐹𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅)) ↔ (𝑋 = 𝐹 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
4924, 29, 483bitrd 304 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝑋 = 𝐹 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
5020, 49biadanii 818 . 2 (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ (𝑋 = 𝐹 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
511, 18, 503bitr4ri 303 1 (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  c0 4253  ifcif 4456   cuni 4836   ciin 4922  ran crn 5581  cfv 6418  (class class class)co 7255  Topctop 21950  clsccl 22077  Filcfil 22904   fClus cfcls 22995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-fbas 20507  df-fil 22905  df-fcls 23000
This theorem is referenced by:  fclsfil  23069  fclstop  23070  isfcls2  23072  fclssscls  23077  flimfcls  23085
  Copyright terms: Public domain W3C validator