MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfcls Structured version   Visualization version   GIF version

Theorem isfcls 22614
Description: A cluster point of a filter. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsval.x 𝑋 = 𝐽
Assertion
Ref Expression
isfcls (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   𝑋,𝑠   𝐽,𝑠

Proof of Theorem isfcls
Dummy variables 𝑓 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anass 472 . 2 ((((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ (𝑋 = 𝐹 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
2 fvssunirn 6674 . . . . . . . 8 (Fil‘𝑋) ⊆ ran Fil
32sseli 3911 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ran Fil)
4 filunibas 22486 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
54eqcomd 2804 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → 𝑋 = 𝐹)
63, 5jca 515 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ran Fil ∧ 𝑋 = 𝐹))
7 filunirn 22487 . . . . . . 7 (𝐹 ran Fil ↔ 𝐹 ∈ (Fil‘ 𝐹))
8 fveq2 6645 . . . . . . . . 9 (𝑋 = 𝐹 → (Fil‘𝑋) = (Fil‘ 𝐹))
98eleq2d 2875 . . . . . . . 8 (𝑋 = 𝐹 → (𝐹 ∈ (Fil‘𝑋) ↔ 𝐹 ∈ (Fil‘ 𝐹)))
109biimparc 483 . . . . . . 7 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑋 = 𝐹) → 𝐹 ∈ (Fil‘𝑋))
117, 10sylanb 584 . . . . . 6 ((𝐹 ran Fil ∧ 𝑋 = 𝐹) → 𝐹 ∈ (Fil‘𝑋))
126, 11impbii 212 . . . . 5 (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ran Fil ∧ 𝑋 = 𝐹))
1312anbi2i 625 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) ↔ (𝐽 ∈ Top ∧ (𝐹 ran Fil ∧ 𝑋 = 𝐹)))
1413anbi1i 626 . . 3 (((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ (𝐹 ran Fil ∧ 𝑋 = 𝐹)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
15 df-3an 1086 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
16 anass 472 . . . 4 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) ↔ (𝐽 ∈ Top ∧ (𝐹 ran Fil ∧ 𝑋 = 𝐹)))
1716anbi1i 626 . . 3 ((((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ (𝐹 ran Fil ∧ 𝑋 = 𝐹)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
1814, 15, 173bitr4i 306 . 2 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
19 df-fcls 22546 . . . 4 fClus = (𝑗 ∈ Top, 𝑓 ran Fil ↦ if( 𝑗 = 𝑓, 𝑥𝑓 ((cls‘𝑗)‘𝑥), ∅))
2019elmpocl 7367 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) → (𝐽 ∈ Top ∧ 𝐹 ran Fil))
21 fclsval.x . . . . . . 7 𝑋 = 𝐽
2221fclsval 22613 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐹)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅))
237, 22sylan2b 596 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐽 fClus 𝐹) = if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅))
2423eleq2d 2875 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ 𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅)))
25 n0i 4249 . . . . . . 7 (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) → ¬ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) = ∅)
26 iffalse 4434 . . . . . . 7 𝑋 = 𝐹 → if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) = ∅)
2725, 26nsyl2 143 . . . . . 6 (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) → 𝑋 = 𝐹)
2827a1i 11 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) → 𝑋 = 𝐹))
2928pm4.71rd 566 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) ↔ (𝑋 = 𝐹𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅))))
30 iftrue 4431 . . . . . . . 8 (𝑋 = 𝐹 → if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) = 𝑠𝐹 ((cls‘𝐽)‘𝑠))
3130adantl 485 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) = 𝑠𝐹 ((cls‘𝐽)‘𝑠))
3231eleq2d 2875 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) ↔ 𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠)))
33 elex 3459 . . . . . . . 8 (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V)
3433a1i 11 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V))
35 filn0 22467 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘ 𝐹) → 𝐹 ≠ ∅)
367, 35sylbi 220 . . . . . . . . . 10 (𝐹 ran Fil → 𝐹 ≠ ∅)
3736ad2antlr 726 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → 𝐹 ≠ ∅)
38 r19.2z 4398 . . . . . . . . . 10 ((𝐹 ≠ ∅ ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))
3938ex 416 . . . . . . . . 9 (𝐹 ≠ ∅ → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
4037, 39syl 17 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → ∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
41 elex 3459 . . . . . . . . 9 (𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V)
4241rexlimivw 3241 . . . . . . . 8 (∃𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V)
4340, 42syl6 35 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠) → 𝐴 ∈ V))
44 eliin 4886 . . . . . . . 8 (𝐴 ∈ V → (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
4544a1i 11 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 ∈ V → (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
4634, 43, 45pm5.21ndd 384 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 𝑠𝐹 ((cls‘𝐽)‘𝑠) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
4732, 46bitrd 282 . . . . 5 (((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ 𝑋 = 𝐹) → (𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
4847pm5.32da 582 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → ((𝑋 = 𝐹𝐴 ∈ if(𝑋 = 𝐹, 𝑠𝐹 ((cls‘𝐽)‘𝑠), ∅)) ↔ (𝑋 = 𝐹 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
4924, 29, 483bitrd 308 . . 3 ((𝐽 ∈ Top ∧ 𝐹 ran Fil) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝑋 = 𝐹 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
5020, 49biadanii 821 . 2 (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil) ∧ (𝑋 = 𝐹 ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))))
511, 18, 503bitr4ri 307 1 (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  c0 4243  ifcif 4425   cuni 4800   ciin 4882  ran crn 5520  cfv 6324  (class class class)co 7135  Topctop 21498  clsccl 21623  Filcfil 22450   fClus cfcls 22541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-fbas 20088  df-fil 22451  df-fcls 22546
This theorem is referenced by:  fclsfil  22615  fclstop  22616  isfcls2  22618  fclssscls  22623  flimfcls  22631
  Copyright terms: Public domain W3C validator