MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsneii Structured version   Visualization version   GIF version

Theorem fclsneii 22914
Description: A neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclsneii ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (𝑁𝑆) ≠ ∅)

Proof of Theorem fclsneii
StepHypRef Expression
1 simp1 1138 . . . . 5 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝐴 ∈ (𝐽 fClus 𝐹))
2 fclstop 22908 . . . . 5 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top)
31, 2syl 17 . . . 4 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝐽 ∈ Top)
4 simp2 1139 . . . . 5 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝑁 ∈ ((nei‘𝐽)‘{𝐴}))
5 eqid 2737 . . . . . 6 𝐽 = 𝐽
65neii1 22003 . . . . 5 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑁 𝐽)
73, 4, 6syl2anc 587 . . . 4 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝑁 𝐽)
85ntrss2 21954 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 𝐽) → ((int‘𝐽)‘𝑁) ⊆ 𝑁)
93, 7, 8syl2anc 587 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → ((int‘𝐽)‘𝑁) ⊆ 𝑁)
109ssrind 4150 . 2 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (((int‘𝐽)‘𝑁) ∩ 𝑆) ⊆ (𝑁𝑆))
115ntropn 21946 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 𝐽) → ((int‘𝐽)‘𝑁) ∈ 𝐽)
123, 7, 11syl2anc 587 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → ((int‘𝐽)‘𝑁) ∈ 𝐽)
135fclselbas 22913 . . . . . . . 8 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 𝐽)
141, 13syl 17 . . . . . . 7 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝐴 𝐽)
1514snssd 4722 . . . . . 6 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → {𝐴} ⊆ 𝐽)
165neiint 22001 . . . . . 6 ((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑁 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁)))
173, 15, 7, 16syl3anc 1373 . . . . 5 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁)))
184, 17mpbid 235 . . . 4 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → {𝐴} ⊆ ((int‘𝐽)‘𝑁))
19 snssg 4698 . . . . 5 (𝐴 𝐽 → (𝐴 ∈ ((int‘𝐽)‘𝑁) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁)))
2014, 19syl 17 . . . 4 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (𝐴 ∈ ((int‘𝐽)‘𝑁) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁)))
2118, 20mpbird 260 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝐴 ∈ ((int‘𝐽)‘𝑁))
22 simp3 1140 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝑆𝐹)
23 fclsopni 22912 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (((int‘𝐽)‘𝑁) ∈ 𝐽𝐴 ∈ ((int‘𝐽)‘𝑁) ∧ 𝑆𝐹)) → (((int‘𝐽)‘𝑁) ∩ 𝑆) ≠ ∅)
241, 12, 21, 22, 23syl13anc 1374 . 2 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (((int‘𝐽)‘𝑁) ∩ 𝑆) ≠ ∅)
25 ssn0 4315 . 2 (((((int‘𝐽)‘𝑁) ∩ 𝑆) ⊆ (𝑁𝑆) ∧ (((int‘𝐽)‘𝑁) ∩ 𝑆) ≠ ∅) → (𝑁𝑆) ≠ ∅)
2610, 24, 25syl2anc 587 1 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (𝑁𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1089  wcel 2110  wne 2940  cin 3865  wss 3866  c0 4237  {csn 4541   cuni 4819  cfv 6380  (class class class)co 7213  Topctop 21790  intcnt 21914  neicnei 21994   fClus cfcls 22833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-fbas 20360  df-top 21791  df-topon 21808  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-fil 22743  df-fcls 22838
This theorem is referenced by:  fclsnei  22916  fclsfnflim  22924
  Copyright terms: Public domain W3C validator