Proof of Theorem fclsneii
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1136 |
. . . . 5
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐹) → 𝐴 ∈ (𝐽 fClus 𝐹)) |
| 2 | | fclstop 23954 |
. . . . 5
⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐹) → 𝐽 ∈ Top) |
| 4 | | simp2 1137 |
. . . . 5
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐹) → 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) |
| 5 | | eqid 2736 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 6 | 5 | neii1 23049 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑁 ⊆ ∪ 𝐽) |
| 7 | 3, 4, 6 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐹) → 𝑁 ⊆ ∪ 𝐽) |
| 8 | 5 | ntrss2 23000 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑁 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑁) ⊆ 𝑁) |
| 9 | 3, 7, 8 | syl2anc 584 |
. . 3
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐹) → ((int‘𝐽)‘𝑁) ⊆ 𝑁) |
| 10 | 9 | ssrind 4224 |
. 2
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐹) → (((int‘𝐽)‘𝑁) ∩ 𝑆) ⊆ (𝑁 ∩ 𝑆)) |
| 11 | 5 | ntropn 22992 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑁 ⊆ ∪ 𝐽)
→ ((int‘𝐽)‘𝑁) ∈ 𝐽) |
| 12 | 3, 7, 11 | syl2anc 584 |
. . 3
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐹) → ((int‘𝐽)‘𝑁) ∈ 𝐽) |
| 13 | 5 | fclselbas 23959 |
. . . . . . . 8
⊢ (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 ∈ ∪ 𝐽) |
| 14 | 1, 13 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐹) → 𝐴 ∈ ∪ 𝐽) |
| 15 | 14 | snssd 4790 |
. . . . . 6
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐹) → {𝐴} ⊆ ∪ 𝐽) |
| 16 | 5 | neiint 23047 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ {𝐴} ⊆ ∪ 𝐽
∧ 𝑁 ⊆ ∪ 𝐽)
→ (𝑁 ∈
((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁))) |
| 17 | 3, 15, 7, 16 | syl3anc 1373 |
. . . . 5
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐹) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁))) |
| 18 | 4, 17 | mpbid 232 |
. . . 4
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐹) → {𝐴} ⊆ ((int‘𝐽)‘𝑁)) |
| 19 | | snssg 4764 |
. . . . 5
⊢ (𝐴 ∈ ∪ 𝐽
→ (𝐴 ∈
((int‘𝐽)‘𝑁) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁))) |
| 20 | 14, 19 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐹) → (𝐴 ∈ ((int‘𝐽)‘𝑁) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁))) |
| 21 | 18, 20 | mpbird 257 |
. . 3
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐹) → 𝐴 ∈ ((int‘𝐽)‘𝑁)) |
| 22 | | simp3 1138 |
. . 3
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐹) → 𝑆 ∈ 𝐹) |
| 23 | | fclsopni 23958 |
. . 3
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (((int‘𝐽)‘𝑁) ∈ 𝐽 ∧ 𝐴 ∈ ((int‘𝐽)‘𝑁) ∧ 𝑆 ∈ 𝐹)) → (((int‘𝐽)‘𝑁) ∩ 𝑆) ≠ ∅) |
| 24 | 1, 12, 21, 22, 23 | syl13anc 1374 |
. 2
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐹) → (((int‘𝐽)‘𝑁) ∩ 𝑆) ≠ ∅) |
| 25 | | ssn0 4384 |
. 2
⊢
(((((int‘𝐽)‘𝑁) ∩ 𝑆) ⊆ (𝑁 ∩ 𝑆) ∧ (((int‘𝐽)‘𝑁) ∩ 𝑆) ≠ ∅) → (𝑁 ∩ 𝑆) ≠ ∅) |
| 26 | 10, 24, 25 | syl2anc 584 |
1
⊢ ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆 ∈ 𝐹) → (𝑁 ∩ 𝑆) ≠ ∅) |