MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsneii Structured version   Visualization version   GIF version

Theorem fclsneii 23971
Description: A neighborhood of a cluster point of a filter intersects any element of that filter. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclsneii ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (𝑁𝑆) ≠ ∅)

Proof of Theorem fclsneii
StepHypRef Expression
1 simp1 1136 . . . . 5 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝐴 ∈ (𝐽 fClus 𝐹))
2 fclstop 23965 . . . . 5 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐽 ∈ Top)
31, 2syl 17 . . . 4 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝐽 ∈ Top)
4 simp2 1137 . . . . 5 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝑁 ∈ ((nei‘𝐽)‘{𝐴}))
5 eqid 2734 . . . . . 6 𝐽 = 𝐽
65neii1 23060 . . . . 5 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑁 𝐽)
73, 4, 6syl2anc 584 . . . 4 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝑁 𝐽)
85ntrss2 23011 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 𝐽) → ((int‘𝐽)‘𝑁) ⊆ 𝑁)
93, 7, 8syl2anc 584 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → ((int‘𝐽)‘𝑁) ⊆ 𝑁)
109ssrind 4224 . 2 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (((int‘𝐽)‘𝑁) ∩ 𝑆) ⊆ (𝑁𝑆))
115ntropn 23003 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 𝐽) → ((int‘𝐽)‘𝑁) ∈ 𝐽)
123, 7, 11syl2anc 584 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → ((int‘𝐽)‘𝑁) ∈ 𝐽)
135fclselbas 23970 . . . . . . . 8 (𝐴 ∈ (𝐽 fClus 𝐹) → 𝐴 𝐽)
141, 13syl 17 . . . . . . 7 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝐴 𝐽)
1514snssd 4789 . . . . . 6 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → {𝐴} ⊆ 𝐽)
165neiint 23058 . . . . . 6 ((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑁 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁)))
173, 15, 7, 16syl3anc 1372 . . . . 5 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁)))
184, 17mpbid 232 . . . 4 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → {𝐴} ⊆ ((int‘𝐽)‘𝑁))
19 snssg 4763 . . . . 5 (𝐴 𝐽 → (𝐴 ∈ ((int‘𝐽)‘𝑁) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁)))
2014, 19syl 17 . . . 4 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (𝐴 ∈ ((int‘𝐽)‘𝑁) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑁)))
2118, 20mpbird 257 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝐴 ∈ ((int‘𝐽)‘𝑁))
22 simp3 1138 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → 𝑆𝐹)
23 fclsopni 23969 . . 3 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ (((int‘𝐽)‘𝑁) ∈ 𝐽𝐴 ∈ ((int‘𝐽)‘𝑁) ∧ 𝑆𝐹)) → (((int‘𝐽)‘𝑁) ∩ 𝑆) ≠ ∅)
241, 12, 21, 22, 23syl13anc 1373 . 2 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (((int‘𝐽)‘𝑁) ∩ 𝑆) ≠ ∅)
25 ssn0 4384 . 2 (((((int‘𝐽)‘𝑁) ∩ 𝑆) ⊆ (𝑁𝑆) ∧ (((int‘𝐽)‘𝑁) ∩ 𝑆) ≠ ∅) → (𝑁𝑆) ≠ ∅)
2610, 24, 25syl2anc 584 1 ((𝐴 ∈ (𝐽 fClus 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴}) ∧ 𝑆𝐹) → (𝑁𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086  wcel 2107  wne 2931  cin 3930  wss 3931  c0 4313  {csn 4606   cuni 4887  cfv 6541  (class class class)co 7413  Topctop 22847  intcnt 22971  neicnei 23051   fClus cfcls 23890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-fbas 21323  df-top 22848  df-topon 22865  df-cld 22973  df-ntr 22974  df-cls 22975  df-nei 23052  df-fil 23800  df-fcls 23895
This theorem is referenced by:  fclsnei  23973  fclsfnflim  23981
  Copyright terms: Public domain W3C validator