Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgmin Structured version   Visualization version   GIF version

Theorem fgmin 36414
Description: Minimality property of a generated filter: every filter that contains 𝐵 contains its generated filter. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 7-Aug-2015.)
Assertion
Ref Expression
fgmin ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐵𝐹 ↔ (𝑋filGen𝐵) ⊆ 𝐹))

Proof of Theorem fgmin
Dummy variables 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfg 23786 . . . . . . 7 (𝐵 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑥𝐵 𝑥𝑡)))
21adantr 480 . . . . . 6 ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑥𝐵 𝑥𝑡)))
32adantr 480 . . . . 5 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑥𝐵 𝑥𝑡)))
4 ssrexv 3999 . . . . . . . . 9 (𝐵𝐹 → (∃𝑥𝐵 𝑥𝑡 → ∃𝑥𝐹 𝑥𝑡))
54adantl 481 . . . . . . . 8 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (∃𝑥𝐵 𝑥𝑡 → ∃𝑥𝐹 𝑥𝑡))
6 filss 23768 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹𝑡𝑋𝑥𝑡)) → 𝑡𝐹)
763exp2 1355 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹 → (𝑡𝑋 → (𝑥𝑡𝑡𝐹))))
87com34 91 . . . . . . . . . 10 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹 → (𝑥𝑡 → (𝑡𝑋𝑡𝐹))))
98rexlimdv 3131 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → (∃𝑥𝐹 𝑥𝑡 → (𝑡𝑋𝑡𝐹)))
109ad2antlr 727 . . . . . . . 8 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (∃𝑥𝐹 𝑥𝑡 → (𝑡𝑋𝑡𝐹)))
115, 10syld 47 . . . . . . 7 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (∃𝑥𝐵 𝑥𝑡 → (𝑡𝑋𝑡𝐹)))
1211com23 86 . . . . . 6 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (𝑡𝑋 → (∃𝑥𝐵 𝑥𝑡𝑡𝐹)))
1312impd 410 . . . . 5 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → ((𝑡𝑋 ∧ ∃𝑥𝐵 𝑥𝑡) → 𝑡𝐹))
143, 13sylbid 240 . . . 4 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (𝑡 ∈ (𝑋filGen𝐵) → 𝑡𝐹))
1514ssrdv 3935 . . 3 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (𝑋filGen𝐵) ⊆ 𝐹)
1615ex 412 . 2 ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐵𝐹 → (𝑋filGen𝐵) ⊆ 𝐹))
17 ssfg 23787 . . . 4 (𝐵 ∈ (fBas‘𝑋) → 𝐵 ⊆ (𝑋filGen𝐵))
18 sstr2 3936 . . . 4 (𝐵 ⊆ (𝑋filGen𝐵) → ((𝑋filGen𝐵) ⊆ 𝐹𝐵𝐹))
1917, 18syl 17 . . 3 (𝐵 ∈ (fBas‘𝑋) → ((𝑋filGen𝐵) ⊆ 𝐹𝐵𝐹))
2019adantr 480 . 2 ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝑋filGen𝐵) ⊆ 𝐹𝐵𝐹))
2116, 20impbid 212 1 ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐵𝐹 ↔ (𝑋filGen𝐵) ⊆ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wrex 3056  wss 3897  cfv 6481  (class class class)co 7346  fBascfbas 21279  filGencfg 21280  Filcfil 23760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-fbas 21288  df-fg 21289  df-fil 23761
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator