Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgmin Structured version   Visualization version   GIF version

Theorem fgmin 33268
Description: Minimality property of a generated filter: every filter that contains 𝐵 contains its generated filter. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 7-Aug-2015.)
Assertion
Ref Expression
fgmin ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐵𝐹 ↔ (𝑋filGen𝐵) ⊆ 𝐹))

Proof of Theorem fgmin
Dummy variables 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfg 22195 . . . . . . 7 (𝐵 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑥𝐵 𝑥𝑡)))
21adantr 473 . . . . . 6 ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑥𝐵 𝑥𝑡)))
32adantr 473 . . . . 5 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑥𝐵 𝑥𝑡)))
4 ssrexv 3918 . . . . . . . . 9 (𝐵𝐹 → (∃𝑥𝐵 𝑥𝑡 → ∃𝑥𝐹 𝑥𝑡))
54adantl 474 . . . . . . . 8 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (∃𝑥𝐵 𝑥𝑡 → ∃𝑥𝐹 𝑥𝑡))
6 filss 22177 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹𝑡𝑋𝑥𝑡)) → 𝑡𝐹)
763exp2 1334 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹 → (𝑡𝑋 → (𝑥𝑡𝑡𝐹))))
87com34 91 . . . . . . . . . 10 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹 → (𝑥𝑡 → (𝑡𝑋𝑡𝐹))))
98rexlimdv 3222 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → (∃𝑥𝐹 𝑥𝑡 → (𝑡𝑋𝑡𝐹)))
109ad2antlr 714 . . . . . . . 8 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (∃𝑥𝐹 𝑥𝑡 → (𝑡𝑋𝑡𝐹)))
115, 10syld 47 . . . . . . 7 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (∃𝑥𝐵 𝑥𝑡 → (𝑡𝑋𝑡𝐹)))
1211com23 86 . . . . . 6 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (𝑡𝑋 → (∃𝑥𝐵 𝑥𝑡𝑡𝐹)))
1312impd 402 . . . . 5 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → ((𝑡𝑋 ∧ ∃𝑥𝐵 𝑥𝑡) → 𝑡𝐹))
143, 13sylbid 232 . . . 4 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (𝑡 ∈ (𝑋filGen𝐵) → 𝑡𝐹))
1514ssrdv 3858 . . 3 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (𝑋filGen𝐵) ⊆ 𝐹)
1615ex 405 . 2 ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐵𝐹 → (𝑋filGen𝐵) ⊆ 𝐹))
17 ssfg 22196 . . . 4 (𝐵 ∈ (fBas‘𝑋) → 𝐵 ⊆ (𝑋filGen𝐵))
18 sstr2 3859 . . . 4 (𝐵 ⊆ (𝑋filGen𝐵) → ((𝑋filGen𝐵) ⊆ 𝐹𝐵𝐹))
1917, 18syl 17 . . 3 (𝐵 ∈ (fBas‘𝑋) → ((𝑋filGen𝐵) ⊆ 𝐹𝐵𝐹))
2019adantr 473 . 2 ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝑋filGen𝐵) ⊆ 𝐹𝐵𝐹))
2116, 20impbid 204 1 ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐵𝐹 ↔ (𝑋filGen𝐵) ⊆ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  wcel 2050  wrex 3083  wss 3823  cfv 6185  (class class class)co 6974  fBascfbas 20247  filGencfg 20248  Filcfil 22169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4709  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-iota 6149  df-fun 6187  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-fbas 20256  df-fg 20257  df-fil 22170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator