Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgmin Structured version   Visualization version   GIF version

Theorem fgmin 35560
Description: Minimality property of a generated filter: every filter that contains 𝐵 contains its generated filter. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 7-Aug-2015.)
Assertion
Ref Expression
fgmin ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐵𝐹 ↔ (𝑋filGen𝐵) ⊆ 𝐹))

Proof of Theorem fgmin
Dummy variables 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfg 23597 . . . . . . 7 (𝐵 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑥𝐵 𝑥𝑡)))
21adantr 479 . . . . . 6 ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑥𝐵 𝑥𝑡)))
32adantr 479 . . . . 5 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑥𝐵 𝑥𝑡)))
4 ssrexv 4052 . . . . . . . . 9 (𝐵𝐹 → (∃𝑥𝐵 𝑥𝑡 → ∃𝑥𝐹 𝑥𝑡))
54adantl 480 . . . . . . . 8 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (∃𝑥𝐵 𝑥𝑡 → ∃𝑥𝐹 𝑥𝑡))
6 filss 23579 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹𝑡𝑋𝑥𝑡)) → 𝑡𝐹)
763exp2 1352 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹 → (𝑡𝑋 → (𝑥𝑡𝑡𝐹))))
87com34 91 . . . . . . . . . 10 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹 → (𝑥𝑡 → (𝑡𝑋𝑡𝐹))))
98rexlimdv 3151 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → (∃𝑥𝐹 𝑥𝑡 → (𝑡𝑋𝑡𝐹)))
109ad2antlr 723 . . . . . . . 8 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (∃𝑥𝐹 𝑥𝑡 → (𝑡𝑋𝑡𝐹)))
115, 10syld 47 . . . . . . 7 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (∃𝑥𝐵 𝑥𝑡 → (𝑡𝑋𝑡𝐹)))
1211com23 86 . . . . . 6 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (𝑡𝑋 → (∃𝑥𝐵 𝑥𝑡𝑡𝐹)))
1312impd 409 . . . . 5 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → ((𝑡𝑋 ∧ ∃𝑥𝐵 𝑥𝑡) → 𝑡𝐹))
143, 13sylbid 239 . . . 4 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (𝑡 ∈ (𝑋filGen𝐵) → 𝑡𝐹))
1514ssrdv 3989 . . 3 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (𝑋filGen𝐵) ⊆ 𝐹)
1615ex 411 . 2 ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐵𝐹 → (𝑋filGen𝐵) ⊆ 𝐹))
17 ssfg 23598 . . . 4 (𝐵 ∈ (fBas‘𝑋) → 𝐵 ⊆ (𝑋filGen𝐵))
18 sstr2 3990 . . . 4 (𝐵 ⊆ (𝑋filGen𝐵) → ((𝑋filGen𝐵) ⊆ 𝐹𝐵𝐹))
1917, 18syl 17 . . 3 (𝐵 ∈ (fBas‘𝑋) → ((𝑋filGen𝐵) ⊆ 𝐹𝐵𝐹))
2019adantr 479 . 2 ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝑋filGen𝐵) ⊆ 𝐹𝐵𝐹))
2116, 20impbid 211 1 ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐵𝐹 ↔ (𝑋filGen𝐵) ⊆ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2104  wrex 3068  wss 3949  cfv 6544  (class class class)co 7413  fBascfbas 21134  filGencfg 21135  Filcfil 23571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-fbas 21143  df-fg 21144  df-fil 23572
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator