Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgmin Structured version   Visualization version   GIF version

Theorem fgmin 33720
Description: Minimality property of a generated filter: every filter that contains 𝐵 contains its generated filter. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 7-Aug-2015.)
Assertion
Ref Expression
fgmin ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐵𝐹 ↔ (𝑋filGen𝐵) ⊆ 𝐹))

Proof of Theorem fgmin
Dummy variables 𝑥 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfg 22481 . . . . . . 7 (𝐵 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑥𝐵 𝑥𝑡)))
21adantr 483 . . . . . 6 ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑥𝐵 𝑥𝑡)))
32adantr 483 . . . . 5 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑥𝐵 𝑥𝑡)))
4 ssrexv 4036 . . . . . . . . 9 (𝐵𝐹 → (∃𝑥𝐵 𝑥𝑡 → ∃𝑥𝐹 𝑥𝑡))
54adantl 484 . . . . . . . 8 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (∃𝑥𝐵 𝑥𝑡 → ∃𝑥𝐹 𝑥𝑡))
6 filss 22463 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹𝑡𝑋𝑥𝑡)) → 𝑡𝐹)
763exp2 1350 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹 → (𝑡𝑋 → (𝑥𝑡𝑡𝐹))))
87com34 91 . . . . . . . . . 10 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹 → (𝑥𝑡 → (𝑡𝑋𝑡𝐹))))
98rexlimdv 3285 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → (∃𝑥𝐹 𝑥𝑡 → (𝑡𝑋𝑡𝐹)))
109ad2antlr 725 . . . . . . . 8 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (∃𝑥𝐹 𝑥𝑡 → (𝑡𝑋𝑡𝐹)))
115, 10syld 47 . . . . . . 7 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (∃𝑥𝐵 𝑥𝑡 → (𝑡𝑋𝑡𝐹)))
1211com23 86 . . . . . 6 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (𝑡𝑋 → (∃𝑥𝐵 𝑥𝑡𝑡𝐹)))
1312impd 413 . . . . 5 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → ((𝑡𝑋 ∧ ∃𝑥𝐵 𝑥𝑡) → 𝑡𝐹))
143, 13sylbid 242 . . . 4 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (𝑡 ∈ (𝑋filGen𝐵) → 𝑡𝐹))
1514ssrdv 3975 . . 3 (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵𝐹) → (𝑋filGen𝐵) ⊆ 𝐹)
1615ex 415 . 2 ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐵𝐹 → (𝑋filGen𝐵) ⊆ 𝐹))
17 ssfg 22482 . . . 4 (𝐵 ∈ (fBas‘𝑋) → 𝐵 ⊆ (𝑋filGen𝐵))
18 sstr2 3976 . . . 4 (𝐵 ⊆ (𝑋filGen𝐵) → ((𝑋filGen𝐵) ⊆ 𝐹𝐵𝐹))
1917, 18syl 17 . . 3 (𝐵 ∈ (fBas‘𝑋) → ((𝑋filGen𝐵) ⊆ 𝐹𝐵𝐹))
2019adantr 483 . 2 ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝑋filGen𝐵) ⊆ 𝐹𝐵𝐹))
2116, 20impbid 214 1 ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐵𝐹 ↔ (𝑋filGen𝐵) ⊆ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2114  wrex 3141  wss 3938  cfv 6357  (class class class)co 7158  fBascfbas 20535  filGencfg 20536  Filcfil 22455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-fbas 20544  df-fg 20545  df-fil 22456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator