Step | Hyp | Ref
| Expression |
1 | | elfg 23022 |
. . . . . . 7
⊢ (𝐵 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑡))) |
2 | 1 | adantr 481 |
. . . . . 6
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑡))) |
3 | 2 | adantr 481 |
. . . . 5
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵 ⊆ 𝐹) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑡))) |
4 | | ssrexv 3988 |
. . . . . . . . 9
⊢ (𝐵 ⊆ 𝐹 → (∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑡 → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡)) |
5 | 4 | adantl 482 |
. . . . . . . 8
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵 ⊆ 𝐹) → (∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑡 → ∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡)) |
6 | | filss 23004 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ 𝑡 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑡)) → 𝑡 ∈ 𝐹) |
7 | 6 | 3exp2 1353 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → (𝑡 ⊆ 𝑋 → (𝑥 ⊆ 𝑡 → 𝑡 ∈ 𝐹)))) |
8 | 7 | com34 91 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → (𝑥 ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹)))) |
9 | 8 | rexlimdv 3212 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹))) |
10 | 9 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵 ⊆ 𝐹) → (∃𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹))) |
11 | 5, 10 | syld 47 |
. . . . . . 7
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵 ⊆ 𝐹) → (∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑡 → (𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹))) |
12 | 11 | com23 86 |
. . . . . 6
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵 ⊆ 𝐹) → (𝑡 ⊆ 𝑋 → (∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑡 → 𝑡 ∈ 𝐹))) |
13 | 12 | impd 411 |
. . . . 5
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵 ⊆ 𝐹) → ((𝑡 ⊆ 𝑋 ∧ ∃𝑥 ∈ 𝐵 𝑥 ⊆ 𝑡) → 𝑡 ∈ 𝐹)) |
14 | 3, 13 | sylbid 239 |
. . . 4
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵 ⊆ 𝐹) → (𝑡 ∈ (𝑋filGen𝐵) → 𝑡 ∈ 𝐹)) |
15 | 14 | ssrdv 3927 |
. . 3
⊢ (((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐵 ⊆ 𝐹) → (𝑋filGen𝐵) ⊆ 𝐹) |
16 | 15 | ex 413 |
. 2
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐵 ⊆ 𝐹 → (𝑋filGen𝐵) ⊆ 𝐹)) |
17 | | ssfg 23023 |
. . . 4
⊢ (𝐵 ∈ (fBas‘𝑋) → 𝐵 ⊆ (𝑋filGen𝐵)) |
18 | | sstr2 3928 |
. . . 4
⊢ (𝐵 ⊆ (𝑋filGen𝐵) → ((𝑋filGen𝐵) ⊆ 𝐹 → 𝐵 ⊆ 𝐹)) |
19 | 17, 18 | syl 17 |
. . 3
⊢ (𝐵 ∈ (fBas‘𝑋) → ((𝑋filGen𝐵) ⊆ 𝐹 → 𝐵 ⊆ 𝐹)) |
20 | 19 | adantr 481 |
. 2
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝑋filGen𝐵) ⊆ 𝐹 → 𝐵 ⊆ 𝐹)) |
21 | 16, 20 | impbid 211 |
1
⊢ ((𝐵 ∈ (fBas‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐵 ⊆ 𝐹 ↔ (𝑋filGen𝐵) ⊆ 𝐹)) |