Step | Hyp | Ref
| Expression |
1 | | cnflf 23726 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β (π½ Cn πΎ) β (πΉ:πβΆπ β§ βπ β (Filβπ)βπ₯ β (π½ fLim π)(πΉβπ₯) β ((πΎ fLimf π)βπΉ)))) |
2 | | ffun 6719 |
. . . . 5
β’ (πΉ:πβΆπ β Fun πΉ) |
3 | | eqid 2730 |
. . . . . . . 8
β’ βͺ π½ =
βͺ π½ |
4 | 3 | flimelbas 23692 |
. . . . . . 7
β’ (π₯ β (π½ fLim π) β π₯ β βͺ π½) |
5 | 4 | ssriv 3985 |
. . . . . 6
β’ (π½ fLim π) β βͺ π½ |
6 | | fdm 6725 |
. . . . . . . 8
β’ (πΉ:πβΆπ β dom πΉ = π) |
7 | 6 | adantl 480 |
. . . . . . 7
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ πΉ:πβΆπ) β dom πΉ = π) |
8 | | toponuni 22636 |
. . . . . . . 8
β’ (π½ β (TopOnβπ) β π = βͺ π½) |
9 | 8 | ad2antrr 722 |
. . . . . . 7
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ πΉ:πβΆπ) β π = βͺ π½) |
10 | 7, 9 | eqtrd 2770 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ πΉ:πβΆπ) β dom πΉ = βͺ π½) |
11 | 5, 10 | sseqtrrid 4034 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ πΉ:πβΆπ) β (π½ fLim π) β dom πΉ) |
12 | | funimass4 6955 |
. . . . 5
β’ ((Fun
πΉ β§ (π½ fLim π) β dom πΉ) β ((πΉ β (π½ fLim π)) β ((πΎ fLimf π)βπΉ) β βπ₯ β (π½ fLim π)(πΉβπ₯) β ((πΎ fLimf π)βπΉ))) |
13 | 2, 11, 12 | syl2an2 682 |
. . . 4
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ πΉ:πβΆπ) β ((πΉ β (π½ fLim π)) β ((πΎ fLimf π)βπΉ) β βπ₯ β (π½ fLim π)(πΉβπ₯) β ((πΎ fLimf π)βπΉ))) |
14 | 13 | ralbidv 3175 |
. . 3
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ πΉ:πβΆπ) β (βπ β (Filβπ)(πΉ β (π½ fLim π)) β ((πΎ fLimf π)βπΉ) β βπ β (Filβπ)βπ₯ β (π½ fLim π)(πΉβπ₯) β ((πΎ fLimf π)βπΉ))) |
15 | 14 | pm5.32da 577 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β ((πΉ:πβΆπ β§ βπ β (Filβπ)(πΉ β (π½ fLim π)) β ((πΎ fLimf π)βπΉ)) β (πΉ:πβΆπ β§ βπ β (Filβπ)βπ₯ β (π½ fLim π)(πΉβπ₯) β ((πΎ fLimf π)βπΉ)))) |
16 | 1, 15 | bitr4d 281 |
1
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β (π½ Cn πΎ) β (πΉ:πβΆπ β§ βπ β (Filβπ)(πΉ β (π½ fLim π)) β ((πΎ fLimf π)βπΉ)))) |