MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnflf2 Structured version   Visualization version   GIF version

Theorem cnflf2 23727
Description: A function is continuous iff it respects filter limits. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
cnflf2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐹 β€œ (𝐽 fLim 𝑓)) βŠ† ((𝐾 fLimf 𝑓)β€˜πΉ))))
Distinct variable groups:   𝑓,𝑋   𝑓,π‘Œ   𝑓,𝐹   𝑓,𝐽   𝑓,𝐾

Proof of Theorem cnflf2
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 cnflf 23726 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)βˆ€π‘₯ ∈ (𝐽 fLim 𝑓)(πΉβ€˜π‘₯) ∈ ((𝐾 fLimf 𝑓)β€˜πΉ))))
2 ffun 6719 . . . . 5 (𝐹:π‘‹βŸΆπ‘Œ β†’ Fun 𝐹)
3 eqid 2730 . . . . . . . 8 βˆͺ 𝐽 = βˆͺ 𝐽
43flimelbas 23692 . . . . . . 7 (π‘₯ ∈ (𝐽 fLim 𝑓) β†’ π‘₯ ∈ βˆͺ 𝐽)
54ssriv 3985 . . . . . 6 (𝐽 fLim 𝑓) βŠ† βˆͺ 𝐽
6 fdm 6725 . . . . . . . 8 (𝐹:π‘‹βŸΆπ‘Œ β†’ dom 𝐹 = 𝑋)
76adantl 480 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ dom 𝐹 = 𝑋)
8 toponuni 22636 . . . . . . . 8 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
98ad2antrr 722 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ 𝑋 = βˆͺ 𝐽)
107, 9eqtrd 2770 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ dom 𝐹 = βˆͺ 𝐽)
115, 10sseqtrrid 4034 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (𝐽 fLim 𝑓) βŠ† dom 𝐹)
12 funimass4 6955 . . . . 5 ((Fun 𝐹 ∧ (𝐽 fLim 𝑓) βŠ† dom 𝐹) β†’ ((𝐹 β€œ (𝐽 fLim 𝑓)) βŠ† ((𝐾 fLimf 𝑓)β€˜πΉ) ↔ βˆ€π‘₯ ∈ (𝐽 fLim 𝑓)(πΉβ€˜π‘₯) ∈ ((𝐾 fLimf 𝑓)β€˜πΉ)))
132, 11, 12syl2an2 682 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ ((𝐹 β€œ (𝐽 fLim 𝑓)) βŠ† ((𝐾 fLimf 𝑓)β€˜πΉ) ↔ βˆ€π‘₯ ∈ (𝐽 fLim 𝑓)(πΉβ€˜π‘₯) ∈ ((𝐾 fLimf 𝑓)β€˜πΉ)))
1413ralbidv 3175 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐹 β€œ (𝐽 fLim 𝑓)) βŠ† ((𝐾 fLimf 𝑓)β€˜πΉ) ↔ βˆ€π‘“ ∈ (Filβ€˜π‘‹)βˆ€π‘₯ ∈ (𝐽 fLim 𝑓)(πΉβ€˜π‘₯) ∈ ((𝐾 fLimf 𝑓)β€˜πΉ)))
1514pm5.32da 577 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ ((𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐹 β€œ (𝐽 fLim 𝑓)) βŠ† ((𝐾 fLimf 𝑓)β€˜πΉ)) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)βˆ€π‘₯ ∈ (𝐽 fLim 𝑓)(πΉβ€˜π‘₯) ∈ ((𝐾 fLimf 𝑓)β€˜πΉ))))
161, 15bitr4d 281 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘“ ∈ (Filβ€˜π‘‹)(𝐹 β€œ (𝐽 fLim 𝑓)) βŠ† ((𝐾 fLimf 𝑓)β€˜πΉ))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059   βŠ† wss 3947  βˆͺ cuni 4907  dom cdm 5675   β€œ cima 5678  Fun wfun 6536  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411  TopOnctopon 22632   Cn ccn 22948  Filcfil 23569   fLim cflim 23658   fLimf cflf 23659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-map 8824  df-topgen 17393  df-fbas 21141  df-fg 21142  df-top 22616  df-topon 22633  df-ntr 22744  df-nei 22822  df-cn 22951  df-cnp 22952  df-fil 23570  df-fm 23662  df-flim 23663  df-flf 23664
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator