![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnflf2 | Structured version Visualization version GIF version |
Description: A function is continuous iff it respects filter limits. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
Ref | Expression |
---|---|
cnflf2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnflf 24031 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))) | |
2 | ffun 6750 | . . . . 5 ⊢ (𝐹:𝑋⟶𝑌 → Fun 𝐹) | |
3 | eqid 2740 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | flimelbas 23997 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥 ∈ ∪ 𝐽) |
5 | 4 | ssriv 4012 | . . . . . 6 ⊢ (𝐽 fLim 𝑓) ⊆ ∪ 𝐽 |
6 | fdm 6756 | . . . . . . . 8 ⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) | |
7 | 6 | adantl 481 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → dom 𝐹 = 𝑋) |
8 | toponuni 22941 | . . . . . . . 8 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
9 | 8 | ad2antrr 725 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → 𝑋 = ∪ 𝐽) |
10 | 7, 9 | eqtrd 2780 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → dom 𝐹 = ∪ 𝐽) |
11 | 5, 10 | sseqtrrid 4062 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (𝐽 fLim 𝑓) ⊆ dom 𝐹) |
12 | funimass4 6986 | . . . . 5 ⊢ ((Fun 𝐹 ∧ (𝐽 fLim 𝑓) ⊆ dom 𝐹) → ((𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) | |
13 | 2, 11, 12 | syl2an2 685 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) |
14 | 13 | ralbidv 3184 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑓 ∈ (Fil‘𝑋)(𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) |
15 | 14 | pm5.32da 578 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))) |
16 | 1, 15 | bitr4d 282 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ∪ cuni 4931 dom cdm 5700 “ cima 5703 Fun wfun 6567 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 TopOnctopon 22937 Cn ccn 23253 Filcfil 23874 fLim cflim 23963 fLimf cflf 23964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-topgen 17503 df-fbas 21384 df-fg 21385 df-top 22921 df-topon 22938 df-ntr 23049 df-nei 23127 df-cn 23256 df-cnp 23257 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |