|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cnflf2 | Structured version Visualization version GIF version | ||
| Description: A function is continuous iff it respects filter limits. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| cnflf2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnflf 24011 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))) | |
| 2 | ffun 6738 | . . . . 5 ⊢ (𝐹:𝑋⟶𝑌 → Fun 𝐹) | |
| 3 | eqid 2736 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | flimelbas 23977 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥 ∈ ∪ 𝐽) | 
| 5 | 4 | ssriv 3986 | . . . . . 6 ⊢ (𝐽 fLim 𝑓) ⊆ ∪ 𝐽 | 
| 6 | fdm 6744 | . . . . . . . 8 ⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) | |
| 7 | 6 | adantl 481 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → dom 𝐹 = 𝑋) | 
| 8 | toponuni 22921 | . . . . . . . 8 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 9 | 8 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → 𝑋 = ∪ 𝐽) | 
| 10 | 7, 9 | eqtrd 2776 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → dom 𝐹 = ∪ 𝐽) | 
| 11 | 5, 10 | sseqtrrid 4026 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (𝐽 fLim 𝑓) ⊆ dom 𝐹) | 
| 12 | funimass4 6972 | . . . . 5 ⊢ ((Fun 𝐹 ∧ (𝐽 fLim 𝑓) ⊆ dom 𝐹) → ((𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) | |
| 13 | 2, 11, 12 | syl2an2 686 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) | 
| 14 | 13 | ralbidv 3177 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑓 ∈ (Fil‘𝑋)(𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) | 
| 15 | 14 | pm5.32da 579 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))) | 
| 16 | 1, 15 | bitr4d 282 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ⊆ wss 3950 ∪ cuni 4906 dom cdm 5684 “ cima 5687 Fun wfun 6554 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 TopOnctopon 22917 Cn ccn 23233 Filcfil 23854 fLim cflim 23943 fLimf cflf 23944 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-map 8869 df-topgen 17489 df-fbas 21362 df-fg 21363 df-top 22901 df-topon 22918 df-ntr 23029 df-nei 23107 df-cn 23236 df-cnp 23237 df-fil 23855 df-fm 23947 df-flim 23948 df-flf 23949 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |