MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnflf2 Structured version   Visualization version   GIF version

Theorem cnflf2 22611
Description: A function is continuous iff it respects filter limits. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
cnflf2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹))))
Distinct variable groups:   𝑓,𝑋   𝑓,𝑌   𝑓,𝐹   𝑓,𝐽   𝑓,𝐾

Proof of Theorem cnflf2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnflf 22610 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
2 ffun 6517 . . . . 5 (𝐹:𝑋𝑌 → Fun 𝐹)
3 eqid 2821 . . . . . . . 8 𝐽 = 𝐽
43flimelbas 22576 . . . . . . 7 (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥 𝐽)
54ssriv 3971 . . . . . 6 (𝐽 fLim 𝑓) ⊆ 𝐽
6 fdm 6522 . . . . . . . 8 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
76adantl 484 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → dom 𝐹 = 𝑋)
8 toponuni 21522 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
98ad2antrr 724 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝑋 = 𝐽)
107, 9eqtrd 2856 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → dom 𝐹 = 𝐽)
115, 10sseqtrrid 4020 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝐽 fLim 𝑓) ⊆ dom 𝐹)
12 funimass4 6730 . . . . 5 ((Fun 𝐹 ∧ (𝐽 fLim 𝑓) ⊆ dom 𝐹) → ((𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))
132, 11, 12syl2an2 684 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))
1413ralbidv 3197 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑓 ∈ (Fil‘𝑋)(𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))
1514pm5.32da 581 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))))
161, 15bitr4d 284 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wss 3936   cuni 4838  dom cdm 5555  cima 5558  Fun wfun 6349  wf 6351  cfv 6355  (class class class)co 7156  TopOnctopon 21518   Cn ccn 21832  Filcfil 22453   fLim cflim 22542   fLimf cflf 22543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-map 8408  df-topgen 16717  df-fbas 20542  df-fg 20543  df-top 21502  df-topon 21519  df-ntr 21628  df-nei 21706  df-cn 21835  df-cnp 21836  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator