![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnflf2 | Structured version Visualization version GIF version |
Description: A function is continuous iff it respects filter limits. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.) |
Ref | Expression |
---|---|
cnflf2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnflf 22304 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))) | |
2 | ffun 6341 | . . . . 5 ⊢ (𝐹:𝑋⟶𝑌 → Fun 𝐹) | |
3 | eqid 2772 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | flimelbas 22270 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽 fLim 𝑓) → 𝑥 ∈ ∪ 𝐽) |
5 | 4 | ssriv 3858 | . . . . . 6 ⊢ (𝐽 fLim 𝑓) ⊆ ∪ 𝐽 |
6 | fdm 6346 | . . . . . . . 8 ⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) | |
7 | 6 | adantl 474 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → dom 𝐹 = 𝑋) |
8 | toponuni 21216 | . . . . . . . 8 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
9 | 8 | ad2antrr 713 | . . . . . . 7 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → 𝑋 = ∪ 𝐽) |
10 | 7, 9 | eqtrd 2808 | . . . . . 6 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → dom 𝐹 = ∪ 𝐽) |
11 | 5, 10 | syl5sseqr 3906 | . . . . 5 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (𝐽 fLim 𝑓) ⊆ dom 𝐹) |
12 | funimass4 6554 | . . . . 5 ⊢ ((Fun 𝐹 ∧ (𝐽 fLim 𝑓) ⊆ dom 𝐹) → ((𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) | |
13 | 2, 11, 12 | syl2an2 673 | . . . 4 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) |
14 | 13 | ralbidv 3141 | . . 3 ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑓 ∈ (Fil‘𝑋)(𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹) ↔ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹))) |
15 | 14 | pm5.32da 571 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹)) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)∀𝑥 ∈ (𝐽 fLim 𝑓)(𝐹‘𝑥) ∈ ((𝐾 fLimf 𝑓)‘𝐹)))) |
16 | 1, 15 | bitr4d 274 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹 “ (𝐽 fLim 𝑓)) ⊆ ((𝐾 fLimf 𝑓)‘𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ∀wral 3082 ⊆ wss 3825 ∪ cuni 4706 dom cdm 5400 “ cima 5403 Fun wfun 6176 ⟶wf 6178 ‘cfv 6182 (class class class)co 6970 TopOnctopon 21212 Cn ccn 21526 Filcfil 22147 fLim cflim 22236 fLimf cflf 22237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-oprab 6974 df-mpo 6975 df-1st 7494 df-2nd 7495 df-map 8200 df-topgen 16563 df-fbas 20234 df-fg 20235 df-top 21196 df-topon 21213 df-ntr 21322 df-nei 21400 df-cn 21529 df-cnp 21530 df-fil 22148 df-fm 22240 df-flim 22241 df-flf 22242 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |