![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sygbasnfpfi | Structured version Visualization version GIF version |
Description: The class of non-fixed points of a permutation of a finite set is finite. (Contributed by AV, 13-Jan-2019.) |
Ref | Expression |
---|---|
psgnfvalfi.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnfvalfi.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
sygbasnfpfi | ⊢ ((𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵) → dom (𝑃 ∖ I ) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnfvalfi.g | . . . . . 6 ⊢ 𝐺 = (SymGrp‘𝐷) | |
2 | psgnfvalfi.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | symgbasf 19285 | . . . . 5 ⊢ (𝑃 ∈ 𝐵 → 𝑃:𝐷⟶𝐷) |
4 | 3 | ffnd 6718 | . . . 4 ⊢ (𝑃 ∈ 𝐵 → 𝑃 Fn 𝐷) |
5 | 4 | adantl 481 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵) → 𝑃 Fn 𝐷) |
6 | fndifnfp 7176 | . . 3 ⊢ (𝑃 Fn 𝐷 → dom (𝑃 ∖ I ) = {𝑥 ∈ 𝐷 ∣ (𝑃‘𝑥) ≠ 𝑥}) | |
7 | 5, 6 | syl 17 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵) → dom (𝑃 ∖ I ) = {𝑥 ∈ 𝐷 ∣ (𝑃‘𝑥) ≠ 𝑥}) |
8 | rabfi 9273 | . . 3 ⊢ (𝐷 ∈ Fin → {𝑥 ∈ 𝐷 ∣ (𝑃‘𝑥) ≠ 𝑥} ∈ Fin) | |
9 | 8 | adantr 480 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵) → {𝑥 ∈ 𝐷 ∣ (𝑃‘𝑥) ≠ 𝑥} ∈ Fin) |
10 | 7, 9 | eqeltrd 2832 | 1 ⊢ ((𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵) → dom (𝑃 ∖ I ) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 {crab 3431 ∖ cdif 3945 I cid 5573 dom cdm 5676 Fn wfn 6538 ‘cfv 6543 Fincfn 8943 Basecbs 17149 SymGrpcsymg 19276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-tset 17221 df-efmnd 18787 df-symg 19277 |
This theorem is referenced by: psgnfvalfi 19423 psgnvalfi 19424 psgnran 19425 psgnfieu 19428 psgnghm2 21354 cofipsgn 21366 psgndmfi 32528 |
Copyright terms: Public domain | W3C validator |