![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sygbasnfpfi | Structured version Visualization version GIF version |
Description: The class of non-fixed points of a permutation of a finite set is finite. (Contributed by AV, 13-Jan-2019.) |
Ref | Expression |
---|---|
psgnfvalfi.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnfvalfi.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
sygbasnfpfi | ⊢ ((𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵) → dom (𝑃 ∖ I ) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnfvalfi.g | . . . . . 6 ⊢ 𝐺 = (SymGrp‘𝐷) | |
2 | psgnfvalfi.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
3 | 1, 2 | symgbasf 19071 | . . . . 5 ⊢ (𝑃 ∈ 𝐵 → 𝑃:𝐷⟶𝐷) |
4 | 3 | ffnd 6646 | . . . 4 ⊢ (𝑃 ∈ 𝐵 → 𝑃 Fn 𝐷) |
5 | 4 | adantl 482 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵) → 𝑃 Fn 𝐷) |
6 | fndifnfp 7098 | . . 3 ⊢ (𝑃 Fn 𝐷 → dom (𝑃 ∖ I ) = {𝑥 ∈ 𝐷 ∣ (𝑃‘𝑥) ≠ 𝑥}) | |
7 | 5, 6 | syl 17 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵) → dom (𝑃 ∖ I ) = {𝑥 ∈ 𝐷 ∣ (𝑃‘𝑥) ≠ 𝑥}) |
8 | rabfi 9126 | . . 3 ⊢ (𝐷 ∈ Fin → {𝑥 ∈ 𝐷 ∣ (𝑃‘𝑥) ≠ 𝑥} ∈ Fin) | |
9 | 8 | adantr 481 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵) → {𝑥 ∈ 𝐷 ∣ (𝑃‘𝑥) ≠ 𝑥} ∈ Fin) |
10 | 7, 9 | eqeltrd 2837 | 1 ⊢ ((𝐷 ∈ Fin ∧ 𝑃 ∈ 𝐵) → dom (𝑃 ∖ I ) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 {crab 3403 ∖ cdif 3894 I cid 5511 dom cdm 5614 Fn wfn 6468 ‘cfv 6473 Fincfn 8796 Basecbs 17001 SymGrpcsymg 19062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-map 8680 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-z 12413 df-uz 12676 df-fz 13333 df-struct 16937 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-ress 17031 df-plusg 17064 df-tset 17070 df-efmnd 18596 df-symg 19063 |
This theorem is referenced by: psgnfvalfi 19209 psgnvalfi 19210 psgnran 19211 psgnfieu 19214 psgnghm2 20884 cofipsgn 20896 psgndmfi 31593 |
Copyright terms: Public domain | W3C validator |