Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topfneec2 Structured version   Visualization version   GIF version

Theorem topfneec2 35697
Description: A topology is precisely identified with its equivalence class. (Contributed by Jeff Hankins, 12-Oct-2009.)
Hypothesis
Ref Expression
topfneec2.1 = (Fne ∩ Fne)
Assertion
Ref Expression
topfneec2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ([𝐽] = [𝐾] 𝐽 = 𝐾))

Proof of Theorem topfneec2
StepHypRef Expression
1 topfneec2.1 . . 3 = (Fne ∩ Fne)
21fneval 35693 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 𝐾 ↔ (topGen‘𝐽) = (topGen‘𝐾)))
31fneer 35694 . . . 4 Er V
43a1i 11 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → Er V)
5 elex 3485 . . . 4 (𝐽 ∈ Top → 𝐽 ∈ V)
65adantr 480 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → 𝐽 ∈ V)
74, 6erth 8747 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 𝐾 ↔ [𝐽] = [𝐾] ))
8 tgtop 22797 . . 3 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
9 tgtop 22797 . . 3 (𝐾 ∈ Top → (topGen‘𝐾) = 𝐾)
108, 9eqeqan12d 2738 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ((topGen‘𝐽) = (topGen‘𝐾) ↔ 𝐽 = 𝐾))
112, 7, 103bitr3d 309 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ([𝐽] = [𝐾] 𝐽 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  Vcvv 3466  cin 3939   class class class wbr 5138  ccnv 5665  cfv 6533   Er wer 8695  [cec 8696  topGenctg 17381  Topctop 22716  Fnecfne 35677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fv 6541  df-er 8698  df-ec 8700  df-topgen 17387  df-top 22717  df-fne 35678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator