| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > topfneec2 | Structured version Visualization version GIF version | ||
| Description: A topology is precisely identified with its equivalence class. (Contributed by Jeff Hankins, 12-Oct-2009.) |
| Ref | Expression |
|---|---|
| topfneec2.1 | ⊢ ∼ = (Fne ∩ ◡Fne) |
| Ref | Expression |
|---|---|
| topfneec2 | ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ([𝐽] ∼ = [𝐾] ∼ ↔ 𝐽 = 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topfneec2.1 | . . 3 ⊢ ∼ = (Fne ∩ ◡Fne) | |
| 2 | 1 | fneval 36328 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∼ 𝐾 ↔ (topGen‘𝐽) = (topGen‘𝐾))) |
| 3 | 1 | fneer 36329 | . . . 4 ⊢ ∼ Er V |
| 4 | 3 | a1i 11 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ∼ Er V) |
| 5 | elex 3459 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐽 ∈ V) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → 𝐽 ∈ V) |
| 7 | 4, 6 | erth 8686 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∼ 𝐾 ↔ [𝐽] ∼ = [𝐾] ∼ )) |
| 8 | tgtop 22876 | . . 3 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
| 9 | tgtop 22876 | . . 3 ⊢ (𝐾 ∈ Top → (topGen‘𝐾) = 𝐾) | |
| 10 | 8, 9 | eqeqan12d 2743 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ((topGen‘𝐽) = (topGen‘𝐾) ↔ 𝐽 = 𝐾)) |
| 11 | 2, 7, 10 | 3bitr3d 309 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ([𝐽] ∼ = [𝐾] ∼ ↔ 𝐽 = 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∩ cin 3904 class class class wbr 5095 ◡ccnv 5622 ‘cfv 6486 Er wer 8629 [cec 8630 topGenctg 17359 Topctop 22796 Fnecfne 36312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-er 8632 df-ec 8634 df-topgen 17365 df-top 22797 df-fne 36313 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |