Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topfneec2 Structured version   Visualization version   GIF version

Theorem topfneec2 36390
Description: A topology is precisely identified with its equivalence class. (Contributed by Jeff Hankins, 12-Oct-2009.)
Hypothesis
Ref Expression
topfneec2.1 = (Fne ∩ Fne)
Assertion
Ref Expression
topfneec2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ([𝐽] = [𝐾] 𝐽 = 𝐾))

Proof of Theorem topfneec2
StepHypRef Expression
1 topfneec2.1 . . 3 = (Fne ∩ Fne)
21fneval 36386 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 𝐾 ↔ (topGen‘𝐽) = (topGen‘𝐾)))
31fneer 36387 . . . 4 Er V
43a1i 11 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → Er V)
5 elex 3457 . . . 4 (𝐽 ∈ Top → 𝐽 ∈ V)
65adantr 480 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → 𝐽 ∈ V)
74, 6erth 8671 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 𝐾 ↔ [𝐽] = [𝐾] ))
8 tgtop 22883 . . 3 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
9 tgtop 22883 . . 3 (𝐾 ∈ Top → (topGen‘𝐾) = 𝐾)
108, 9eqeqan12d 2745 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ((topGen‘𝐽) = (topGen‘𝐾) ↔ 𝐽 = 𝐾))
112, 7, 103bitr3d 309 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ([𝐽] = [𝐾] 𝐽 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cin 3896   class class class wbr 5086  ccnv 5610  cfv 6476   Er wer 8614  [cec 8615  topGenctg 17336  Topctop 22803  Fnecfne 36370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fv 6484  df-er 8617  df-ec 8619  df-topgen 17342  df-top 22804  df-fne 36371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator