![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > topfneec2 | Structured version Visualization version GIF version |
Description: A topology is precisely identified with its equivalence class. (Contributed by Jeff Hankins, 12-Oct-2009.) |
Ref | Expression |
---|---|
topfneec2.1 | ⊢ ∼ = (Fne ∩ ◡Fne) |
Ref | Expression |
---|---|
topfneec2 | ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ([𝐽] ∼ = [𝐾] ∼ ↔ 𝐽 = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topfneec2.1 | . . 3 ⊢ ∼ = (Fne ∩ ◡Fne) | |
2 | 1 | fneval 35693 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∼ 𝐾 ↔ (topGen‘𝐽) = (topGen‘𝐾))) |
3 | 1 | fneer 35694 | . . . 4 ⊢ ∼ Er V |
4 | 3 | a1i 11 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ∼ Er V) |
5 | elex 3485 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐽 ∈ V) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → 𝐽 ∈ V) |
7 | 4, 6 | erth 8747 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∼ 𝐾 ↔ [𝐽] ∼ = [𝐾] ∼ )) |
8 | tgtop 22797 | . . 3 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
9 | tgtop 22797 | . . 3 ⊢ (𝐾 ∈ Top → (topGen‘𝐾) = 𝐾) | |
10 | 8, 9 | eqeqan12d 2738 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ((topGen‘𝐽) = (topGen‘𝐾) ↔ 𝐽 = 𝐾)) |
11 | 2, 7, 10 | 3bitr3d 309 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ([𝐽] ∼ = [𝐾] ∼ ↔ 𝐽 = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∩ cin 3939 class class class wbr 5138 ◡ccnv 5665 ‘cfv 6533 Er wer 8695 [cec 8696 topGenctg 17381 Topctop 22716 Fnecfne 35677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fv 6541 df-er 8698 df-ec 8700 df-topgen 17387 df-top 22717 df-fne 35678 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |