| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > topfneec2 | Structured version Visualization version GIF version | ||
| Description: A topology is precisely identified with its equivalence class. (Contributed by Jeff Hankins, 12-Oct-2009.) |
| Ref | Expression |
|---|---|
| topfneec2.1 | ⊢ ∼ = (Fne ∩ ◡Fne) |
| Ref | Expression |
|---|---|
| topfneec2 | ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ([𝐽] ∼ = [𝐾] ∼ ↔ 𝐽 = 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topfneec2.1 | . . 3 ⊢ ∼ = (Fne ∩ ◡Fne) | |
| 2 | 1 | fneval 36386 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∼ 𝐾 ↔ (topGen‘𝐽) = (topGen‘𝐾))) |
| 3 | 1 | fneer 36387 | . . . 4 ⊢ ∼ Er V |
| 4 | 3 | a1i 11 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ∼ Er V) |
| 5 | elex 3457 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐽 ∈ V) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → 𝐽 ∈ V) |
| 7 | 4, 6 | erth 8671 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∼ 𝐾 ↔ [𝐽] ∼ = [𝐾] ∼ )) |
| 8 | tgtop 22883 | . . 3 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
| 9 | tgtop 22883 | . . 3 ⊢ (𝐾 ∈ Top → (topGen‘𝐾) = 𝐾) | |
| 10 | 8, 9 | eqeqan12d 2745 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ((topGen‘𝐽) = (topGen‘𝐾) ↔ 𝐽 = 𝐾)) |
| 11 | 2, 7, 10 | 3bitr3d 309 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ([𝐽] ∼ = [𝐾] ∼ ↔ 𝐽 = 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 class class class wbr 5086 ◡ccnv 5610 ‘cfv 6476 Er wer 8614 [cec 8615 topGenctg 17336 Topctop 22803 Fnecfne 36370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fv 6484 df-er 8617 df-ec 8619 df-topgen 17342 df-top 22804 df-fne 36371 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |