| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > topfneec2 | Structured version Visualization version GIF version | ||
| Description: A topology is precisely identified with its equivalence class. (Contributed by Jeff Hankins, 12-Oct-2009.) |
| Ref | Expression |
|---|---|
| topfneec2.1 | ⊢ ∼ = (Fne ∩ ◡Fne) |
| Ref | Expression |
|---|---|
| topfneec2 | ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ([𝐽] ∼ = [𝐾] ∼ ↔ 𝐽 = 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topfneec2.1 | . . 3 ⊢ ∼ = (Fne ∩ ◡Fne) | |
| 2 | 1 | fneval 36347 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∼ 𝐾 ↔ (topGen‘𝐽) = (topGen‘𝐾))) |
| 3 | 1 | fneer 36348 | . . . 4 ⊢ ∼ Er V |
| 4 | 3 | a1i 11 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ∼ Er V) |
| 5 | elex 3471 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐽 ∈ V) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → 𝐽 ∈ V) |
| 7 | 4, 6 | erth 8728 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∼ 𝐾 ↔ [𝐽] ∼ = [𝐾] ∼ )) |
| 8 | tgtop 22867 | . . 3 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
| 9 | tgtop 22867 | . . 3 ⊢ (𝐾 ∈ Top → (topGen‘𝐾) = 𝐾) | |
| 10 | 8, 9 | eqeqan12d 2744 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ((topGen‘𝐽) = (topGen‘𝐾) ↔ 𝐽 = 𝐾)) |
| 11 | 2, 7, 10 | 3bitr3d 309 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ([𝐽] ∼ = [𝐾] ∼ ↔ 𝐽 = 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∩ cin 3916 class class class wbr 5110 ◡ccnv 5640 ‘cfv 6514 Er wer 8671 [cec 8672 topGenctg 17407 Topctop 22787 Fnecfne 36331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-er 8674 df-ec 8676 df-topgen 17413 df-top 22788 df-fne 36332 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |