Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  topfneec2 Structured version   Visualization version   GIF version

Theorem topfneec2 35897
Description: A topology is precisely identified with its equivalence class. (Contributed by Jeff Hankins, 12-Oct-2009.)
Hypothesis
Ref Expression
topfneec2.1 = (Fne ∩ Fne)
Assertion
Ref Expression
topfneec2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ([𝐽] = [𝐾] 𝐽 = 𝐾))

Proof of Theorem topfneec2
StepHypRef Expression
1 topfneec2.1 . . 3 = (Fne ∩ Fne)
21fneval 35893 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 𝐾 ↔ (topGen‘𝐽) = (topGen‘𝐾)))
31fneer 35894 . . . 4 Er V
43a1i 11 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → Er V)
5 elex 3482 . . . 4 (𝐽 ∈ Top → 𝐽 ∈ V)
65adantr 479 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → 𝐽 ∈ V)
74, 6erth 8773 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 𝐾 ↔ [𝐽] = [𝐾] ))
8 tgtop 22894 . . 3 (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽)
9 tgtop 22894 . . 3 (𝐾 ∈ Top → (topGen‘𝐾) = 𝐾)
108, 9eqeqan12d 2739 . 2 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ((topGen‘𝐽) = (topGen‘𝐾) ↔ 𝐽 = 𝐾))
112, 7, 103bitr3d 308 1 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ([𝐽] = [𝐾] 𝐽 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  Vcvv 3463  cin 3938   class class class wbr 5143  ccnv 5671  cfv 6543   Er wer 8720  [cec 8721  topGenctg 17418  Topctop 22813  Fnecfne 35877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fv 6551  df-er 8723  df-ec 8725  df-topgen 17424  df-top 22814  df-fne 35878
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator