![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > topfneec2 | Structured version Visualization version GIF version |
Description: A topology is precisely identified with its equivalence class. (Contributed by Jeff Hankins, 12-Oct-2009.) |
Ref | Expression |
---|---|
topfneec2.1 | ⊢ ∼ = (Fne ∩ ◡Fne) |
Ref | Expression |
---|---|
topfneec2 | ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ([𝐽] ∼ = [𝐾] ∼ ↔ 𝐽 = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topfneec2.1 | . . 3 ⊢ ∼ = (Fne ∩ ◡Fne) | |
2 | 1 | fneval 35745 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∼ 𝐾 ↔ (topGen‘𝐽) = (topGen‘𝐾))) |
3 | 1 | fneer 35746 | . . . 4 ⊢ ∼ Er V |
4 | 3 | a1i 11 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ∼ Er V) |
5 | elex 3487 | . . . 4 ⊢ (𝐽 ∈ Top → 𝐽 ∈ V) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → 𝐽 ∈ V) |
7 | 4, 6 | erth 8754 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ∼ 𝐾 ↔ [𝐽] ∼ = [𝐾] ∼ )) |
8 | tgtop 22831 | . . 3 ⊢ (𝐽 ∈ Top → (topGen‘𝐽) = 𝐽) | |
9 | tgtop 22831 | . . 3 ⊢ (𝐾 ∈ Top → (topGen‘𝐾) = 𝐾) | |
10 | 8, 9 | eqeqan12d 2740 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ((topGen‘𝐽) = (topGen‘𝐾) ↔ 𝐽 = 𝐾)) |
11 | 2, 7, 10 | 3bitr3d 309 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → ([𝐽] ∼ = [𝐾] ∼ ↔ 𝐽 = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ∩ cin 3942 class class class wbr 5141 ◡ccnv 5668 ‘cfv 6537 Er wer 8702 [cec 8703 topGenctg 17392 Topctop 22750 Fnecfne 35729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fv 6545 df-er 8705 df-ec 8707 df-topgen 17398 df-top 22751 df-fne 35730 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |