Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnexd Structured version   Visualization version   GIF version

Theorem fnexd 40135
Description: If the domain of a function is a set, the function is a set. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
fnexd.1 (𝜑𝐹 Fn 𝐴)
fnexd.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
fnexd (𝜑𝐹 ∈ V)

Proof of Theorem fnexd
StepHypRef Expression
1 fnexd.1 . 2 (𝜑𝐹 Fn 𝐴)
2 fnexd.2 . 2 (𝜑𝐴𝑉)
3 fnex 6737 . 2 ((𝐹 Fn 𝐴𝐴𝑉) → 𝐹 ∈ V)
41, 2, 3syl2anc 581 1 (𝜑𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2166  Vcvv 3414   Fn wfn 6118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pr 5127
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131
This theorem is referenced by:  limsupequzlem  40749
  Copyright terms: Public domain W3C validator