MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funex Structured version   Visualization version   GIF version

Theorem funex 7153
Description: If the domain of a function exists, so does the function. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of fnex 7151. (Note: Any resemblance between F.U.N.E.X. and "Have You Any Eggs" is purely a coincidence originated by Swedish chefs.) (Contributed by NM, 11-Nov-1995.)
Assertion
Ref Expression
funex ((Fun 𝐹 ∧ dom 𝐹𝐵) → 𝐹 ∈ V)

Proof of Theorem funex
StepHypRef Expression
1 funfn 6511 . 2 (Fun 𝐹𝐹 Fn dom 𝐹)
2 fnex 7151 . 2 ((𝐹 Fn dom 𝐹 ∧ dom 𝐹𝐵) → 𝐹 ∈ V)
31, 2sylanb 581 1 ((Fun 𝐹 ∧ dom 𝐹𝐵) → 𝐹 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  Vcvv 3436  dom cdm 5616  Fun wfun 6475   Fn wfn 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489
This theorem is referenced by:  opabex  7154  mptexg  7155  mptexgf  7156  funrnex  7886  oprabexd  7907  oprabex  7908  mpoexxg  8007  tfrlem14  8310  hartogslem2  9429  harwdom  9477  abrexexd  32484  modelaxreplem2  45011  mpoexxg2  48368
  Copyright terms: Public domain W3C validator