![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funex | Structured version Visualization version GIF version |
Description: If the domain of a function exists, so does the function. Part of Theorem 4.15(v) of [Monk1] p. 46. This theorem is derived using the Axiom of Replacement in the form of fnex 6800. (Note: Any resemblance between F.U.N.E.X. and "Have You Any Eggs" is purely a coincidence originated by Swedish chefs.) (Contributed by NM, 11-Nov-1995.) |
Ref | Expression |
---|---|
funex | ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6212 | . 2 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | fnex 6800 | . 2 ⊢ ((𝐹 Fn dom 𝐹 ∧ dom 𝐹 ∈ 𝐵) → 𝐹 ∈ V) | |
3 | 1, 2 | sylanb 573 | 1 ⊢ ((Fun 𝐹 ∧ dom 𝐹 ∈ 𝐵) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∈ wcel 2048 Vcvv 3409 dom cdm 5400 Fun wfun 6176 Fn wfn 6177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 |
This theorem is referenced by: opabex 6803 mptexg 6804 mptexgf 6805 funrnex 7461 oprabexd 7481 oprabex 7482 mpoexxg 7574 tfrlem14 7824 hartogslem2 8794 harwdom 8841 abrexexd 30038 mpt2exxg2 43690 |
Copyright terms: Public domain | W3C validator |