![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmsspw | Structured version Visualization version GIF version |
Description: Partial maps are a subset of the power set of the Cartesian product of its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
pmsspw | ⊢ (𝐴 ↑pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4336 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → ¬ (𝐴 ↑pm 𝐵) = ∅) | |
2 | fnpm 8863 | . . . . . . . . 9 ⊢ ↑pm Fn (V × V) | |
3 | 2 | fndmi 6664 | . . . . . . . 8 ⊢ dom ↑pm = (V × V) |
4 | 3 | ndmov 7610 | . . . . . . 7 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ↑pm 𝐵) = ∅) |
5 | 1, 4 | nsyl2 141 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
6 | elpmg 8872 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) |
8 | 7 | ibi 266 | . . . 4 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴))) |
9 | 8 | simprd 494 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → 𝑓 ⊆ (𝐵 × 𝐴)) |
10 | velpw 4612 | . . 3 ⊢ (𝑓 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝑓 ⊆ (𝐵 × 𝐴)) | |
11 | 9, 10 | sylibr 233 | . 2 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → 𝑓 ∈ 𝒫 (𝐵 × 𝐴)) |
12 | 11 | ssriv 3983 | 1 ⊢ (𝐴 ↑pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ⊆ wss 3947 ∅c0 4325 𝒫 cpw 4607 × cxp 5680 Fun wfun 6548 (class class class)co 7424 ↑pm cpm 8856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-1st 8003 df-2nd 8004 df-pm 8858 |
This theorem is referenced by: mapsspw 8907 wunpm 10768 |
Copyright terms: Public domain | W3C validator |