MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmsspw Structured version   Visualization version   GIF version

Theorem pmsspw 8665
Description: Partial maps are a subset of the power set of the Cartesian product of its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
pmsspw (𝐴pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)

Proof of Theorem pmsspw
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 n0i 4267 . . . . . . 7 (𝑓 ∈ (𝐴pm 𝐵) → ¬ (𝐴pm 𝐵) = ∅)
2 fnpm 8623 . . . . . . . . 9 pm Fn (V × V)
32fndmi 6537 . . . . . . . 8 dom ↑pm = (V × V)
43ndmov 7456 . . . . . . 7 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴pm 𝐵) = ∅)
51, 4nsyl2 141 . . . . . 6 (𝑓 ∈ (𝐴pm 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
6 elpmg 8631 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
75, 6syl 17 . . . . 5 (𝑓 ∈ (𝐴pm 𝐵) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
87ibi 266 . . . 4 (𝑓 ∈ (𝐴pm 𝐵) → (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴)))
98simprd 496 . . 3 (𝑓 ∈ (𝐴pm 𝐵) → 𝑓 ⊆ (𝐵 × 𝐴))
10 velpw 4538 . . 3 (𝑓 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝑓 ⊆ (𝐵 × 𝐴))
119, 10sylibr 233 . 2 (𝑓 ∈ (𝐴pm 𝐵) → 𝑓 ∈ 𝒫 (𝐵 × 𝐴))
1211ssriv 3925 1 (𝐴pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  c0 4256  𝒫 cpw 4533   × cxp 5587  Fun wfun 6427  (class class class)co 7275  pm cpm 8616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-pm 8618
This theorem is referenced by:  mapsspw  8666  wunpm  10481
  Copyright terms: Public domain W3C validator