| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmsspw | Structured version Visualization version GIF version | ||
| Description: Partial maps are a subset of the power set of the Cartesian product of its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| pmsspw | ⊢ (𝐴 ↑pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i 4289 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → ¬ (𝐴 ↑pm 𝐵) = ∅) | |
| 2 | fnpm 8764 | . . . . . . . . 9 ⊢ ↑pm Fn (V × V) | |
| 3 | 2 | fndmi 6590 | . . . . . . . 8 ⊢ dom ↑pm = (V × V) |
| 4 | 3 | ndmov 7536 | . . . . . . 7 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ↑pm 𝐵) = ∅) |
| 5 | 1, 4 | nsyl2 141 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 6 | elpmg 8773 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) |
| 8 | 7 | ibi 267 | . . . 4 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴))) |
| 9 | 8 | simprd 495 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → 𝑓 ⊆ (𝐵 × 𝐴)) |
| 10 | velpw 4554 | . . 3 ⊢ (𝑓 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝑓 ⊆ (𝐵 × 𝐴)) | |
| 11 | 9, 10 | sylibr 234 | . 2 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → 𝑓 ∈ 𝒫 (𝐵 × 𝐴)) |
| 12 | 11 | ssriv 3934 | 1 ⊢ (𝐴 ↑pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4549 × cxp 5617 Fun wfun 6480 (class class class)co 7352 ↑pm cpm 8757 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-pm 8759 |
| This theorem is referenced by: mapsspw 8808 wunpm 10623 |
| Copyright terms: Public domain | W3C validator |