![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmsspw | Structured version Visualization version GIF version |
Description: Partial maps are a subset of the power set of the Cartesian product of its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
pmsspw | ⊢ (𝐴 ↑pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0i 4334 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → ¬ (𝐴 ↑pm 𝐵) = ∅) | |
2 | fnpm 8832 | . . . . . . . . 9 ⊢ ↑pm Fn (V × V) | |
3 | 2 | fndmi 6654 | . . . . . . . 8 ⊢ dom ↑pm = (V × V) |
4 | 3 | ndmov 7595 | . . . . . . 7 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ↑pm 𝐵) = ∅) |
5 | 1, 4 | nsyl2 141 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
6 | elpmg 8841 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) |
8 | 7 | ibi 266 | . . . 4 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴))) |
9 | 8 | simprd 494 | . . 3 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → 𝑓 ⊆ (𝐵 × 𝐴)) |
10 | velpw 4608 | . . 3 ⊢ (𝑓 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝑓 ⊆ (𝐵 × 𝐴)) | |
11 | 9, 10 | sylibr 233 | . 2 ⊢ (𝑓 ∈ (𝐴 ↑pm 𝐵) → 𝑓 ∈ 𝒫 (𝐵 × 𝐴)) |
12 | 11 | ssriv 3987 | 1 ⊢ (𝐴 ↑pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ⊆ wss 3949 ∅c0 4323 𝒫 cpw 4603 × cxp 5675 Fun wfun 6538 (class class class)co 7413 ↑pm cpm 8825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7979 df-2nd 7980 df-pm 8827 |
This theorem is referenced by: mapsspw 8876 wunpm 10724 |
Copyright terms: Public domain | W3C validator |