MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmss12g Structured version   Visualization version   GIF version

Theorem pmss12g 8878
Description: Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
pmss12g (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝐴pm 𝐵) ⊆ (𝐶pm 𝐷))

Proof of Theorem pmss12g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 xpss12 5667 . . . . . . 7 ((𝐵𝐷𝐴𝐶) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶))
21ancoms 458 . . . . . 6 ((𝐴𝐶𝐵𝐷) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶))
3 sstr 3965 . . . . . . 7 ((𝑓 ⊆ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) → 𝑓 ⊆ (𝐷 × 𝐶))
43expcom 413 . . . . . 6 ((𝐵 × 𝐴) ⊆ (𝐷 × 𝐶) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶)))
52, 4syl 17 . . . . 5 ((𝐴𝐶𝐵𝐷) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶)))
65anim2d 612 . . . 4 ((𝐴𝐶𝐵𝐷) → ((Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
76adantr 480 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → ((Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
8 ssexg 5291 . . . . 5 ((𝐴𝐶𝐶𝑉) → 𝐴 ∈ V)
9 ssexg 5291 . . . . 5 ((𝐵𝐷𝐷𝑊) → 𝐵 ∈ V)
10 elpmg 8852 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
118, 9, 10syl2an 596 . . . 4 (((𝐴𝐶𝐶𝑉) ∧ (𝐵𝐷𝐷𝑊)) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
1211an4s 660 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
13 elpmg 8852 . . . 4 ((𝐶𝑉𝐷𝑊) → (𝑓 ∈ (𝐶pm 𝐷) ↔ (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
1413adantl 481 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝑓 ∈ (𝐶pm 𝐷) ↔ (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
157, 12, 143imtr4d 294 . 2 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝑓 ∈ (𝐴pm 𝐵) → 𝑓 ∈ (𝐶pm 𝐷)))
1615ssrdv 3962 1 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝐴pm 𝐵) ⊆ (𝐶pm 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2107  Vcvv 3457  wss 3924   × cxp 5650  Fun wfun 6522  (class class class)co 7400  pm cpm 8836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-sbc 3764  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-opab 5180  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-iota 6481  df-fun 6530  df-fv 6536  df-ov 7403  df-oprab 7404  df-mpo 7405  df-pm 8838
This theorem is referenced by:  lmres  23225  dvnadd  25870  caures  37713
  Copyright terms: Public domain W3C validator