![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pmss12g | Structured version Visualization version GIF version |
Description: Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.) |
Ref | Expression |
---|---|
pmss12g | ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝐴 ↑pm 𝐵) ⊆ (𝐶 ↑pm 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpss12 5649 | . . . . . . 7 ⊢ ((𝐵 ⊆ 𝐷 ∧ 𝐴 ⊆ 𝐶) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) | |
2 | 1 | ancoms 460 | . . . . . 6 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) |
3 | sstr 3953 | . . . . . . 7 ⊢ ((𝑓 ⊆ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) → 𝑓 ⊆ (𝐷 × 𝐶)) | |
4 | 3 | expcom 415 | . . . . . 6 ⊢ ((𝐵 × 𝐴) ⊆ (𝐷 × 𝐶) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶))) |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶))) |
6 | 5 | anim2d 613 | . . . 4 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) → ((Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) |
7 | 6 | adantr 482 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → ((Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) |
8 | ssexg 5281 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉) → 𝐴 ∈ V) | |
9 | ssexg 5281 | . . . . 5 ⊢ ((𝐵 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊) → 𝐵 ∈ V) | |
10 | elpmg 8784 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) | |
11 | 8, 9, 10 | syl2an 597 | . . . 4 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ 𝑉) ∧ (𝐵 ⊆ 𝐷 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) |
12 | 11 | an4s 659 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐵 × 𝐴)))) |
13 | elpmg 8784 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (𝑓 ∈ (𝐶 ↑pm 𝐷) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) | |
14 | 13 | adantl 483 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐶 ↑pm 𝐷) ↔ (Fun 𝑓 ∧ 𝑓 ⊆ (𝐷 × 𝐶)))) |
15 | 7, 12, 14 | 3imtr4d 294 | . 2 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝑓 ∈ (𝐴 ↑pm 𝐵) → 𝑓 ∈ (𝐶 ↑pm 𝐷))) |
16 | 15 | ssrdv 3951 | 1 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊)) → (𝐴 ↑pm 𝐵) ⊆ (𝐶 ↑pm 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 Vcvv 3444 ⊆ wss 3911 × cxp 5632 Fun wfun 6491 (class class class)co 7358 ↑pm cpm 8769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-sbc 3741 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-iota 6449 df-fun 6499 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-pm 8771 |
This theorem is referenced by: lmres 22667 dvnadd 25309 caures 36265 |
Copyright terms: Public domain | W3C validator |