MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmss12g Structured version   Visualization version   GIF version

Theorem pmss12g 8883
Description: Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
pmss12g (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝐴pm 𝐵) ⊆ (𝐶pm 𝐷))

Proof of Theorem pmss12g
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 xpss12 5669 . . . . . . 7 ((𝐵𝐷𝐴𝐶) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶))
21ancoms 458 . . . . . 6 ((𝐴𝐶𝐵𝐷) → (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶))
3 sstr 3967 . . . . . . 7 ((𝑓 ⊆ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ⊆ (𝐷 × 𝐶)) → 𝑓 ⊆ (𝐷 × 𝐶))
43expcom 413 . . . . . 6 ((𝐵 × 𝐴) ⊆ (𝐷 × 𝐶) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶)))
52, 4syl 17 . . . . 5 ((𝐴𝐶𝐵𝐷) → (𝑓 ⊆ (𝐵 × 𝐴) → 𝑓 ⊆ (𝐷 × 𝐶)))
65anim2d 612 . . . 4 ((𝐴𝐶𝐵𝐷) → ((Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
76adantr 480 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → ((Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴)) → (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
8 ssexg 5293 . . . . 5 ((𝐴𝐶𝐶𝑉) → 𝐴 ∈ V)
9 ssexg 5293 . . . . 5 ((𝐵𝐷𝐷𝑊) → 𝐵 ∈ V)
10 elpmg 8857 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
118, 9, 10syl2an 596 . . . 4 (((𝐴𝐶𝐶𝑉) ∧ (𝐵𝐷𝐷𝑊)) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
1211an4s 660 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝑓 ∈ (𝐴pm 𝐵) ↔ (Fun 𝑓𝑓 ⊆ (𝐵 × 𝐴))))
13 elpmg 8857 . . . 4 ((𝐶𝑉𝐷𝑊) → (𝑓 ∈ (𝐶pm 𝐷) ↔ (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
1413adantl 481 . . 3 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝑓 ∈ (𝐶pm 𝐷) ↔ (Fun 𝑓𝑓 ⊆ (𝐷 × 𝐶))))
157, 12, 143imtr4d 294 . 2 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝑓 ∈ (𝐴pm 𝐵) → 𝑓 ∈ (𝐶pm 𝐷)))
1615ssrdv 3964 1 (((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝐴pm 𝐵) ⊆ (𝐶pm 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  Vcvv 3459  wss 3926   × cxp 5652  Fun wfun 6525  (class class class)co 7405  pm cpm 8841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-pm 8843
This theorem is referenced by:  lmres  23238  dvnadd  25883  caures  37784
  Copyright terms: Public domain W3C validator