Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvnply2 Structured version   Visualization version   GIF version

Theorem dvnply2 24858
 Description: Polynomials have polynomials as derivatives of all orders. (Contributed by Mario Carneiro, 1-Jan-2017.)
Assertion
Ref Expression
dvnply2 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆))

Proof of Theorem dvnply2
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6642 . . . . . 6 (𝑥 = 0 → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘0))
21eleq1d 2895 . . . . 5 (𝑥 = 0 → (((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆) ↔ ((ℂ D𝑛 𝐹)‘0) ∈ (Poly‘𝑆)))
32imbi2d 343 . . . 4 (𝑥 = 0 → (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆)) ↔ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘0) ∈ (Poly‘𝑆))))
4 fveq2 6642 . . . . . 6 (𝑥 = 𝑛 → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘𝑛))
54eleq1d 2895 . . . . 5 (𝑥 = 𝑛 → (((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆) ↔ ((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆)))
65imbi2d 343 . . . 4 (𝑥 = 𝑛 → (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆)) ↔ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆))))
7 fveq2 6642 . . . . . 6 (𝑥 = (𝑛 + 1) → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘(𝑛 + 1)))
87eleq1d 2895 . . . . 5 (𝑥 = (𝑛 + 1) → (((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆) ↔ ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ∈ (Poly‘𝑆)))
98imbi2d 343 . . . 4 (𝑥 = (𝑛 + 1) → (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆)) ↔ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ∈ (Poly‘𝑆))))
10 fveq2 6642 . . . . . 6 (𝑥 = 𝑁 → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘𝑁))
1110eleq1d 2895 . . . . 5 (𝑥 = 𝑁 → (((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆) ↔ ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆)))
1211imbi2d 343 . . . 4 (𝑥 = 𝑁 → (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆)) ↔ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆))))
13 ssid 3964 . . . . . 6 ℂ ⊆ ℂ
14 cnex 10592 . . . . . . 7 ℂ ∈ V
15 plyf 24770 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
1615adantl 484 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹:ℂ⟶ℂ)
17 fpmg 8406 . . . . . . 7 ((ℂ ∈ V ∧ ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ) → 𝐹 ∈ (ℂ ↑pm ℂ))
1814, 14, 16, 17mp3an12i 1461 . . . . . 6 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 ∈ (ℂ ↑pm ℂ))
19 dvn0 24502 . . . . . 6 ((ℂ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → ((ℂ D𝑛 𝐹)‘0) = 𝐹)
2013, 18, 19sylancr 589 . . . . 5 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘0) = 𝐹)
21 simpr 487 . . . . 5 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆))
2220, 21eqeltrd 2911 . . . 4 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘0) ∈ (Poly‘𝑆))
23 dvply2g 24856 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ ((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆)) → (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ∈ (Poly‘𝑆))
2423ex 415 . . . . . . . 8 (𝑆 ∈ (SubRing‘ℂfld) → (((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆) → (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ∈ (Poly‘𝑆)))
2524ad2antrr 724 . . . . . . 7 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆) → (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ∈ (Poly‘𝑆)))
26 dvnp1 24503 . . . . . . . . . 10 ((ℂ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)))
2713, 26mp3an1 1444 . . . . . . . . 9 ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)))
2818, 27sylan 582 . . . . . . . 8 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)))
2928eleq1d 2895 . . . . . . 7 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ∈ (Poly‘𝑆) ↔ (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ∈ (Poly‘𝑆)))
3025, 29sylibrd 261 . . . . . 6 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ∈ (Poly‘𝑆)))
3130expcom 416 . . . . 5 (𝑛 ∈ ℕ0 → ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ∈ (Poly‘𝑆))))
3231a2d 29 . . . 4 (𝑛 ∈ ℕ0 → (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆)) → ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ∈ (Poly‘𝑆))))
333, 6, 9, 12, 22, 32nn0ind 12052 . . 3 (𝑁 ∈ ℕ0 → ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆)))
3433impcom 410 . 2 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑁 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆))
35343impa 1106 1 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∧ w3a 1083   = wceq 1537   ∈ wcel 2114  Vcvv 3470   ⊆ wss 3909  ⟶wf 6323  ‘cfv 6327  (class class class)co 7129   ↑pm cpm 8381  ℂcc 10509  0cc0 10511  1c1 10512   + caddc 10514  ℕ0cn0 11872  SubRingcsubrg 19503  ℂfldccnfld 20517   D cdv 24441   D𝑛 cdvn 24442  Polycply 24756 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5162  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435  ax-inf2 9078  ax-cnex 10567  ax-resscn 10568  ax-1cn 10569  ax-icn 10570  ax-addcl 10571  ax-addrcl 10572  ax-mulcl 10573  ax-mulrcl 10574  ax-mulcom 10575  ax-addass 10576  ax-mulass 10577  ax-distr 10578  ax-i2m1 10579  ax-1ne0 10580  ax-1rid 10581  ax-rnegex 10582  ax-rrecex 10583  ax-cnre 10584  ax-pre-lttri 10585  ax-pre-lttrn 10586  ax-pre-ltadd 10587  ax-pre-mulgt0 10588  ax-pre-sup 10589  ax-addf 10590  ax-mulf 10591 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4811  df-int 4849  df-iun 4893  df-iin 4894  df-br 5039  df-opab 5101  df-mpt 5119  df-tr 5145  df-id 5432  df-eprel 5437  df-po 5446  df-so 5447  df-fr 5486  df-se 5487  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-isom 6336  df-riota 7087  df-ov 7132  df-oprab 7133  df-mpo 7134  df-of 7383  df-om 7555  df-1st 7663  df-2nd 7664  df-supp 7805  df-wrecs 7921  df-recs 7982  df-rdg 8020  df-1o 8076  df-2o 8077  df-oadd 8080  df-er 8263  df-map 8382  df-pm 8383  df-ixp 8436  df-en 8484  df-dom 8485  df-sdom 8486  df-fin 8487  df-fsupp 8808  df-fi 8849  df-sup 8880  df-inf 8881  df-oi 8948  df-card 9342  df-pnf 10651  df-mnf 10652  df-xr 10653  df-ltxr 10654  df-le 10655  df-sub 10846  df-neg 10847  df-div 11272  df-nn 11613  df-2 11675  df-3 11676  df-4 11677  df-5 11678  df-6 11679  df-7 11680  df-8 11681  df-9 11682  df-n0 11873  df-z 11957  df-dec 12074  df-uz 12219  df-q 12324  df-rp 12365  df-xneg 12482  df-xadd 12483  df-xmul 12484  df-icc 12720  df-fz 12873  df-fzo 13014  df-fl 13142  df-seq 13350  df-exp 13411  df-hash 13672  df-cj 14434  df-re 14435  df-im 14436  df-sqrt 14570  df-abs 14571  df-clim 14821  df-rlim 14822  df-sum 15019  df-struct 16460  df-ndx 16461  df-slot 16462  df-base 16464  df-sets 16465  df-ress 16466  df-plusg 16553  df-mulr 16554  df-starv 16555  df-sca 16556  df-vsca 16557  df-ip 16558  df-tset 16559  df-ple 16560  df-ds 16562  df-unif 16563  df-hom 16564  df-cco 16565  df-rest 16671  df-topn 16672  df-0g 16690  df-gsum 16691  df-topgen 16692  df-pt 16693  df-prds 16696  df-xrs 16750  df-qtop 16755  df-imas 16756  df-xps 16758  df-mre 16832  df-mrc 16833  df-acs 16835  df-mgm 17827  df-sgrp 17876  df-mnd 17887  df-submnd 17932  df-grp 18081  df-minusg 18082  df-mulg 18200  df-subg 18251  df-cntz 18422  df-cmn 18883  df-mgp 19215  df-ur 19227  df-ring 19274  df-cring 19275  df-subrg 19505  df-psmet 20509  df-xmet 20510  df-met 20511  df-bl 20512  df-mopn 20513  df-fbas 20514  df-fg 20515  df-cnfld 20518  df-top 21474  df-topon 21491  df-topsp 21513  df-bases 21526  df-cld 21599  df-ntr 21600  df-cls 21601  df-nei 21678  df-lp 21716  df-perf 21717  df-cn 21807  df-cnp 21808  df-haus 21895  df-tx 22142  df-hmeo 22335  df-fil 22426  df-fm 22518  df-flim 22519  df-flf 22520  df-xms 22902  df-ms 22903  df-tms 22904  df-cncf 23458  df-0p 24249  df-limc 24444  df-dv 24445  df-dvn 24446  df-ply 24760  df-coe 24762  df-dgr 24763 This theorem is referenced by:  dvnply  24859  taylthlem2  24944
 Copyright terms: Public domain W3C validator