| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvnply2 | Structured version Visualization version GIF version | ||
| Description: Polynomials have polynomials as derivatives of all orders. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| Ref | Expression |
|---|---|
| dvnply2 | ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6841 | . . . . . 6 ⊢ (𝑥 = 0 → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘0)) | |
| 2 | 1 | eleq1d 2813 | . . . . 5 ⊢ (𝑥 = 0 → (((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆) ↔ ((ℂ D𝑛 𝐹)‘0) ∈ (Poly‘𝑆))) |
| 3 | 2 | imbi2d 340 | . . . 4 ⊢ (𝑥 = 0 → (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆)) ↔ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘0) ∈ (Poly‘𝑆)))) |
| 4 | fveq2 6841 | . . . . . 6 ⊢ (𝑥 = 𝑛 → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘𝑛)) | |
| 5 | 4 | eleq1d 2813 | . . . . 5 ⊢ (𝑥 = 𝑛 → (((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆) ↔ ((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆))) |
| 6 | 5 | imbi2d 340 | . . . 4 ⊢ (𝑥 = 𝑛 → (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆)) ↔ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆)))) |
| 7 | fveq2 6841 | . . . . . 6 ⊢ (𝑥 = (𝑛 + 1) → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘(𝑛 + 1))) | |
| 8 | 7 | eleq1d 2813 | . . . . 5 ⊢ (𝑥 = (𝑛 + 1) → (((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆) ↔ ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ∈ (Poly‘𝑆))) |
| 9 | 8 | imbi2d 340 | . . . 4 ⊢ (𝑥 = (𝑛 + 1) → (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆)) ↔ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ∈ (Poly‘𝑆)))) |
| 10 | fveq2 6841 | . . . . . 6 ⊢ (𝑥 = 𝑁 → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘𝑁)) | |
| 11 | 10 | eleq1d 2813 | . . . . 5 ⊢ (𝑥 = 𝑁 → (((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆) ↔ ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆))) |
| 12 | 11 | imbi2d 340 | . . . 4 ⊢ (𝑥 = 𝑁 → (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆)) ↔ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆)))) |
| 13 | ssid 3966 | . . . . . 6 ⊢ ℂ ⊆ ℂ | |
| 14 | cnex 11128 | . . . . . . 7 ⊢ ℂ ∈ V | |
| 15 | plyf 26138 | . . . . . . . 8 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
| 16 | 15 | adantl 481 | . . . . . . 7 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹:ℂ⟶ℂ) |
| 17 | fpmg 8819 | . . . . . . 7 ⊢ ((ℂ ∈ V ∧ ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ) → 𝐹 ∈ (ℂ ↑pm ℂ)) | |
| 18 | 14, 14, 16, 17 | mp3an12i 1467 | . . . . . 6 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 ∈ (ℂ ↑pm ℂ)) |
| 19 | dvn0 25861 | . . . . . 6 ⊢ ((ℂ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → ((ℂ D𝑛 𝐹)‘0) = 𝐹) | |
| 20 | 13, 18, 19 | sylancr 587 | . . . . 5 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘0) = 𝐹) |
| 21 | simpr 484 | . . . . 5 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆)) | |
| 22 | 20, 21 | eqeltrd 2828 | . . . 4 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘0) ∈ (Poly‘𝑆)) |
| 23 | dvply2g 26227 | . . . . . . . . 9 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ ((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆)) → (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ∈ (Poly‘𝑆)) | |
| 24 | 23 | ex 412 | . . . . . . . 8 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → (((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆) → (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ∈ (Poly‘𝑆))) |
| 25 | 24 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆) → (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ∈ (Poly‘𝑆))) |
| 26 | dvnp1 25862 | . . . . . . . . . 10 ⊢ ((ℂ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 𝐹)‘𝑛))) | |
| 27 | 13, 26 | mp3an1 1450 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 𝐹)‘𝑛))) |
| 28 | 18, 27 | sylan 580 | . . . . . . . 8 ⊢ (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 𝐹)‘𝑛))) |
| 29 | 28 | eleq1d 2813 | . . . . . . 7 ⊢ (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ∈ (Poly‘𝑆) ↔ (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ∈ (Poly‘𝑆))) |
| 30 | 25, 29 | sylibrd 259 | . . . . . 6 ⊢ (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ∈ (Poly‘𝑆))) |
| 31 | 30 | expcom 413 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ∈ (Poly‘𝑆)))) |
| 32 | 31 | a2d 29 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆)) → ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ∈ (Poly‘𝑆)))) |
| 33 | 3, 6, 9, 12, 22, 32 | nn0ind 12608 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆))) |
| 34 | 33 | impcom 407 | . 2 ⊢ (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑁 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆)) |
| 35 | 34 | 3impa 1109 | 1 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 ⟶wf 6496 ‘cfv 6500 (class class class)co 7370 ↑pm cpm 8778 ℂcc 11045 0cc0 11047 1c1 11048 + caddc 11050 ℕ0cn0 12421 SubRingcsubrg 20491 ℂfldccnfld 21298 D cdv 25799 D𝑛 cdvn 25800 Polycply 26124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-inf2 9573 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 ax-pre-sup 11125 ax-addf 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-of 7634 df-om 7824 df-1st 7948 df-2nd 7949 df-supp 8118 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8649 df-map 8779 df-pm 8780 df-ixp 8849 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-fsupp 9290 df-fi 9339 df-sup 9370 df-inf 9371 df-oi 9440 df-card 9871 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-div 11815 df-nn 12166 df-2 12228 df-3 12229 df-4 12230 df-5 12231 df-6 12232 df-7 12233 df-8 12234 df-9 12235 df-n0 12422 df-z 12509 df-dec 12629 df-uz 12773 df-q 12887 df-rp 12931 df-xneg 13051 df-xadd 13052 df-xmul 13053 df-icc 13292 df-fz 13448 df-fzo 13595 df-fl 13733 df-seq 13946 df-exp 14006 df-hash 14275 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-clim 15432 df-rlim 15433 df-sum 15631 df-struct 17095 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 df-plusg 17211 df-mulr 17212 df-starv 17213 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ds 17220 df-unif 17221 df-hom 17222 df-cco 17223 df-rest 17363 df-topn 17364 df-0g 17382 df-gsum 17383 df-topgen 17384 df-pt 17385 df-prds 17388 df-xrs 17443 df-qtop 17448 df-imas 17449 df-xps 17451 df-mre 17525 df-mrc 17526 df-acs 17528 df-mgm 18551 df-sgrp 18630 df-mnd 18646 df-submnd 18695 df-grp 18852 df-minusg 18853 df-mulg 18984 df-subg 19039 df-cntz 19233 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-cring 20158 df-subrng 20468 df-subrg 20492 df-psmet 21290 df-xmet 21291 df-met 21292 df-bl 21293 df-mopn 21294 df-fbas 21295 df-fg 21296 df-cnfld 21299 df-top 22816 df-topon 22833 df-topsp 22855 df-bases 22868 df-cld 22941 df-ntr 22942 df-cls 22943 df-nei 23020 df-lp 23058 df-perf 23059 df-cn 23149 df-cnp 23150 df-haus 23237 df-tx 23484 df-hmeo 23677 df-fil 23768 df-fm 23860 df-flim 23861 df-flf 23862 df-xms 24243 df-ms 24244 df-tms 24245 df-cncf 24806 df-0p 25606 df-limc 25802 df-dv 25803 df-dvn 25804 df-ply 26128 df-coe 26130 df-dgr 26131 |
| This theorem is referenced by: dvnply 26231 taylthlem2 26317 taylthlem2OLD 26318 |
| Copyright terms: Public domain | W3C validator |