| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvnply2 | Structured version Visualization version GIF version | ||
| Description: Polynomials have polynomials as derivatives of all orders. (Contributed by Mario Carneiro, 1-Jan-2017.) |
| Ref | Expression |
|---|---|
| dvnply2 | ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6840 | . . . . . 6 ⊢ (𝑥 = 0 → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘0)) | |
| 2 | 1 | eleq1d 2813 | . . . . 5 ⊢ (𝑥 = 0 → (((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆) ↔ ((ℂ D𝑛 𝐹)‘0) ∈ (Poly‘𝑆))) |
| 3 | 2 | imbi2d 340 | . . . 4 ⊢ (𝑥 = 0 → (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆)) ↔ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘0) ∈ (Poly‘𝑆)))) |
| 4 | fveq2 6840 | . . . . . 6 ⊢ (𝑥 = 𝑛 → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘𝑛)) | |
| 5 | 4 | eleq1d 2813 | . . . . 5 ⊢ (𝑥 = 𝑛 → (((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆) ↔ ((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆))) |
| 6 | 5 | imbi2d 340 | . . . 4 ⊢ (𝑥 = 𝑛 → (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆)) ↔ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆)))) |
| 7 | fveq2 6840 | . . . . . 6 ⊢ (𝑥 = (𝑛 + 1) → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘(𝑛 + 1))) | |
| 8 | 7 | eleq1d 2813 | . . . . 5 ⊢ (𝑥 = (𝑛 + 1) → (((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆) ↔ ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ∈ (Poly‘𝑆))) |
| 9 | 8 | imbi2d 340 | . . . 4 ⊢ (𝑥 = (𝑛 + 1) → (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆)) ↔ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ∈ (Poly‘𝑆)))) |
| 10 | fveq2 6840 | . . . . . 6 ⊢ (𝑥 = 𝑁 → ((ℂ D𝑛 𝐹)‘𝑥) = ((ℂ D𝑛 𝐹)‘𝑁)) | |
| 11 | 10 | eleq1d 2813 | . . . . 5 ⊢ (𝑥 = 𝑁 → (((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆) ↔ ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆))) |
| 12 | 11 | imbi2d 340 | . . . 4 ⊢ (𝑥 = 𝑁 → (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑥) ∈ (Poly‘𝑆)) ↔ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆)))) |
| 13 | ssid 3966 | . . . . . 6 ⊢ ℂ ⊆ ℂ | |
| 14 | cnex 11127 | . . . . . . 7 ⊢ ℂ ∈ V | |
| 15 | plyf 26137 | . . . . . . . 8 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | |
| 16 | 15 | adantl 481 | . . . . . . 7 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹:ℂ⟶ℂ) |
| 17 | fpmg 8818 | . . . . . . 7 ⊢ ((ℂ ∈ V ∧ ℂ ∈ V ∧ 𝐹:ℂ⟶ℂ) → 𝐹 ∈ (ℂ ↑pm ℂ)) | |
| 18 | 14, 14, 16, 17 | mp3an12i 1467 | . . . . . 6 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 ∈ (ℂ ↑pm ℂ)) |
| 19 | dvn0 25860 | . . . . . 6 ⊢ ((ℂ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℂ)) → ((ℂ D𝑛 𝐹)‘0) = 𝐹) | |
| 20 | 13, 18, 19 | sylancr 587 | . . . . 5 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘0) = 𝐹) |
| 21 | simpr 484 | . . . . 5 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 ∈ (Poly‘𝑆)) | |
| 22 | 20, 21 | eqeltrd 2828 | . . . 4 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘0) ∈ (Poly‘𝑆)) |
| 23 | dvply2g 26226 | . . . . . . . . 9 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ ((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆)) → (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ∈ (Poly‘𝑆)) | |
| 24 | 23 | ex 412 | . . . . . . . 8 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → (((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆) → (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ∈ (Poly‘𝑆))) |
| 25 | 24 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆) → (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ∈ (Poly‘𝑆))) |
| 26 | dvnp1 25861 | . . . . . . . . . 10 ⊢ ((ℂ ⊆ ℂ ∧ 𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 𝐹)‘𝑛))) | |
| 27 | 13, 26 | mp3an1 1450 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (ℂ ↑pm ℂ) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 𝐹)‘𝑛))) |
| 28 | 18, 27 | sylan 580 | . . . . . . . 8 ⊢ (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) = (ℂ D ((ℂ D𝑛 𝐹)‘𝑛))) |
| 29 | 28 | eleq1d 2813 | . . . . . . 7 ⊢ (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ∈ (Poly‘𝑆) ↔ (ℂ D ((ℂ D𝑛 𝐹)‘𝑛)) ∈ (Poly‘𝑆))) |
| 30 | 25, 29 | sylibrd 259 | . . . . . 6 ⊢ (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑛 ∈ ℕ0) → (((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ∈ (Poly‘𝑆))) |
| 31 | 30 | expcom 413 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ∈ (Poly‘𝑆)))) |
| 32 | 31 | a2d 29 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑛) ∈ (Poly‘𝑆)) → ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘(𝑛 + 1)) ∈ (Poly‘𝑆)))) |
| 33 | 3, 6, 9, 12, 22, 32 | nn0ind 12607 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆))) |
| 34 | 33 | impcom 407 | . 2 ⊢ (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ 𝑁 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆)) |
| 35 | 34 | 3impa 1109 | 1 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆) ∧ 𝑁 ∈ ℕ0) → ((ℂ D𝑛 𝐹)‘𝑁) ∈ (Poly‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ↑pm cpm 8777 ℂcc 11044 0cc0 11046 1c1 11047 + caddc 11049 ℕ0cn0 12420 SubRingcsubrg 20490 ℂfldccnfld 21297 D cdv 25798 D𝑛 cdvn 25799 Polycply 26123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9572 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 ax-addf 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-fi 9338 df-sup 9369 df-inf 9370 df-oi 9439 df-card 9870 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-q 12886 df-rp 12930 df-xneg 13050 df-xadd 13051 df-xmul 13052 df-icc 13291 df-fz 13447 df-fzo 13594 df-fl 13732 df-seq 13945 df-exp 14005 df-hash 14274 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15431 df-rlim 15432 df-sum 15630 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-rest 17362 df-topn 17363 df-0g 17381 df-gsum 17382 df-topgen 17383 df-pt 17384 df-prds 17387 df-xrs 17442 df-qtop 17447 df-imas 17448 df-xps 17450 df-mre 17524 df-mrc 17525 df-acs 17527 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-mulg 18983 df-subg 19038 df-cntz 19232 df-cmn 19697 df-abl 19698 df-mgp 20062 df-rng 20074 df-ur 20103 df-ring 20156 df-cring 20157 df-subrng 20467 df-subrg 20491 df-psmet 21289 df-xmet 21290 df-met 21291 df-bl 21292 df-mopn 21293 df-fbas 21294 df-fg 21295 df-cnfld 21298 df-top 22815 df-topon 22832 df-topsp 22854 df-bases 22867 df-cld 22940 df-ntr 22941 df-cls 22942 df-nei 23019 df-lp 23057 df-perf 23058 df-cn 23148 df-cnp 23149 df-haus 23236 df-tx 23483 df-hmeo 23676 df-fil 23767 df-fm 23859 df-flim 23860 df-flf 23861 df-xms 24242 df-ms 24243 df-tms 24244 df-cncf 24805 df-0p 25605 df-limc 25801 df-dv 25802 df-dvn 25803 df-ply 26127 df-coe 26129 df-dgr 26130 |
| This theorem is referenced by: dvnply 26230 taylthlem2 26316 taylthlem2OLD 26317 |
| Copyright terms: Public domain | W3C validator |