MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmapssres Structured version   Visualization version   GIF version

Theorem elmapssres 8409
Description: A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
elmapssres ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → (𝐴𝐷) ∈ (𝐵m 𝐷))

Proof of Theorem elmapssres
StepHypRef Expression
1 elmapi 8406 . . 3 (𝐴 ∈ (𝐵m 𝐶) → 𝐴:𝐶𝐵)
2 fssres 6520 . . 3 ((𝐴:𝐶𝐵𝐷𝐶) → (𝐴𝐷):𝐷𝐵)
31, 2sylan 582 . 2 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → (𝐴𝐷):𝐷𝐵)
4 elmapex 8405 . . . . 5 (𝐴 ∈ (𝐵m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
54simpld 497 . . . 4 (𝐴 ∈ (𝐵m 𝐶) → 𝐵 ∈ V)
65adantr 483 . . 3 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → 𝐵 ∈ V)
74simprd 498 . . . 4 (𝐴 ∈ (𝐵m 𝐶) → 𝐶 ∈ V)
8 ssexg 5203 . . . . 5 ((𝐷𝐶𝐶 ∈ V) → 𝐷 ∈ V)
98ancoms 461 . . . 4 ((𝐶 ∈ V ∧ 𝐷𝐶) → 𝐷 ∈ V)
107, 9sylan 582 . . 3 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → 𝐷 ∈ V)
116, 10elmapd 8398 . 2 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → ((𝐴𝐷) ∈ (𝐵m 𝐷) ↔ (𝐴𝐷):𝐷𝐵))
123, 11mpbird 259 1 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → (𝐴𝐷) ∈ (𝐵m 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  Vcvv 3473  wss 3913  cres 5533  wf 6327  (class class class)co 7133  m cmap 8384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-fv 6339  df-ov 7136  df-oprab 7137  df-mpo 7138  df-1st 7667  df-2nd 7668  df-map 8386
This theorem is referenced by:  nn0gsumfz  19083  mdetmul  21208  mapfzcons1cl  39452  mzpcompact2lem  39485  diophin  39506  eldiophss  39508  eldioph4b  39545  mccllem  42030  iccpartres  43726  lincresunit3lem2  44680
  Copyright terms: Public domain W3C validator