MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmapssres Structured version   Visualization version   GIF version

Theorem elmapssres 8629
Description: A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
elmapssres ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → (𝐴𝐷) ∈ (𝐵m 𝐷))

Proof of Theorem elmapssres
StepHypRef Expression
1 elmapi 8611 . . 3 (𝐴 ∈ (𝐵m 𝐶) → 𝐴:𝐶𝐵)
2 fssres 6636 . . 3 ((𝐴:𝐶𝐵𝐷𝐶) → (𝐴𝐷):𝐷𝐵)
31, 2sylan 579 . 2 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → (𝐴𝐷):𝐷𝐵)
4 elmapex 8610 . . . . 5 (𝐴 ∈ (𝐵m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
54simpld 494 . . . 4 (𝐴 ∈ (𝐵m 𝐶) → 𝐵 ∈ V)
65adantr 480 . . 3 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → 𝐵 ∈ V)
74simprd 495 . . . 4 (𝐴 ∈ (𝐵m 𝐶) → 𝐶 ∈ V)
8 ssexg 5250 . . . . 5 ((𝐷𝐶𝐶 ∈ V) → 𝐷 ∈ V)
98ancoms 458 . . . 4 ((𝐶 ∈ V ∧ 𝐷𝐶) → 𝐷 ∈ V)
107, 9sylan 579 . . 3 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → 𝐷 ∈ V)
116, 10elmapd 8603 . 2 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → ((𝐴𝐷) ∈ (𝐵m 𝐷) ↔ (𝐴𝐷):𝐷𝐵))
123, 11mpbird 256 1 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → (𝐴𝐷) ∈ (𝐵m 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3430  wss 3891  cres 5590  wf 6426  (class class class)co 7268  m cmap 8589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-map 8591
This theorem is referenced by:  nn0gsumfz  19566  mdetmul  21753  mapfzcons1cl  40520  mzpcompact2lem  40553  diophin  40574  eldiophss  40576  eldioph4b  40613  mccllem  43092  iccpartres  44822  lincresunit3lem2  45773
  Copyright terms: Public domain W3C validator