MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmapssres Structured version   Visualization version   GIF version

Theorem elmapssres 8925
Description: A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
elmapssres ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → (𝐴𝐷) ∈ (𝐵m 𝐷))

Proof of Theorem elmapssres
StepHypRef Expression
1 elmapi 8907 . . 3 (𝐴 ∈ (𝐵m 𝐶) → 𝐴:𝐶𝐵)
2 fssres 6787 . . 3 ((𝐴:𝐶𝐵𝐷𝐶) → (𝐴𝐷):𝐷𝐵)
31, 2sylan 579 . 2 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → (𝐴𝐷):𝐷𝐵)
4 elmapex 8906 . . . . 5 (𝐴 ∈ (𝐵m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
54simpld 494 . . . 4 (𝐴 ∈ (𝐵m 𝐶) → 𝐵 ∈ V)
65adantr 480 . . 3 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → 𝐵 ∈ V)
74simprd 495 . . . 4 (𝐴 ∈ (𝐵m 𝐶) → 𝐶 ∈ V)
8 ssexg 5341 . . . . 5 ((𝐷𝐶𝐶 ∈ V) → 𝐷 ∈ V)
98ancoms 458 . . . 4 ((𝐶 ∈ V ∧ 𝐷𝐶) → 𝐷 ∈ V)
107, 9sylan 579 . . 3 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → 𝐷 ∈ V)
116, 10elmapd 8898 . 2 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → ((𝐴𝐷) ∈ (𝐵m 𝐷) ↔ (𝐴𝐷):𝐷𝐵))
123, 11mpbird 257 1 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → (𝐴𝐷) ∈ (𝐵m 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3488  wss 3976  cres 5702  wf 6569  (class class class)co 7448  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886
This theorem is referenced by:  nn0gsumfz  20026  mdetmul  22650  elmapssresd  42236  mapfzcons1cl  42674  mzpcompact2lem  42707  diophin  42728  eldiophss  42730  eldioph4b  42767  tfsconcatrev  43310  mccllem  45518  iccpartres  47292  lincresunit3lem2  48209
  Copyright terms: Public domain W3C validator