![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elmapssres | Structured version Visualization version GIF version |
Description: A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
elmapssres | ⊢ ((𝐴 ∈ (𝐵 ↑𝑚 𝐶) ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷) ∈ (𝐵 ↑𝑚 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8143 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → 𝐴:𝐶⟶𝐵) | |
2 | fssres 6306 | . . 3 ⊢ ((𝐴:𝐶⟶𝐵 ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷):𝐷⟶𝐵) | |
3 | 1, 2 | sylan 577 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑𝑚 𝐶) ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷):𝐷⟶𝐵) |
4 | elmapex 8142 | . . . . 5 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) | |
5 | 4 | simpld 490 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → 𝐵 ∈ V) |
6 | 5 | adantr 474 | . . 3 ⊢ ((𝐴 ∈ (𝐵 ↑𝑚 𝐶) ∧ 𝐷 ⊆ 𝐶) → 𝐵 ∈ V) |
7 | 4 | simprd 491 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ↑𝑚 𝐶) → 𝐶 ∈ V) |
8 | ssexg 5028 | . . . . 5 ⊢ ((𝐷 ⊆ 𝐶 ∧ 𝐶 ∈ V) → 𝐷 ∈ V) | |
9 | 8 | ancoms 452 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ⊆ 𝐶) → 𝐷 ∈ V) |
10 | 7, 9 | sylan 577 | . . 3 ⊢ ((𝐴 ∈ (𝐵 ↑𝑚 𝐶) ∧ 𝐷 ⊆ 𝐶) → 𝐷 ∈ V) |
11 | 6, 10 | elmapd 8135 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑𝑚 𝐶) ∧ 𝐷 ⊆ 𝐶) → ((𝐴 ↾ 𝐷) ∈ (𝐵 ↑𝑚 𝐷) ↔ (𝐴 ↾ 𝐷):𝐷⟶𝐵)) |
12 | 3, 11 | mpbird 249 | 1 ⊢ ((𝐴 ∈ (𝐵 ↑𝑚 𝐶) ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷) ∈ (𝐵 ↑𝑚 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2166 Vcvv 3413 ⊆ wss 3797 ↾ cres 5343 ⟶wf 6118 (class class class)co 6904 ↑𝑚 cmap 8121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-ral 3121 df-rex 3122 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-id 5249 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-fv 6130 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-1st 7427 df-2nd 7428 df-map 8123 |
This theorem is referenced by: nn0gsumfz 18732 mdetmul 20796 mapfzcons1cl 38124 mzpcompact2lem 38157 diophin 38179 eldiophss 38181 eldioph4b 38218 mccllem 40623 iccpartres 42241 lincresunit3lem2 43115 |
Copyright terms: Public domain | W3C validator |