|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > elmapssres | Structured version Visualization version GIF version | ||
| Description: A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.) | 
| Ref | Expression | 
|---|---|
| elmapssres | ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷) ∈ (𝐵 ↑m 𝐷)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elmapi 8889 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
| 2 | fssres 6774 | . . 3 ⊢ ((𝐴:𝐶⟶𝐵 ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷):𝐷⟶𝐵) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷):𝐷⟶𝐵) | 
| 4 | elmapex 8888 | . . . . 5 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) | |
| 5 | 4 | simpld 494 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐵 ∈ V) | 
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → 𝐵 ∈ V) | 
| 7 | 4 | simprd 495 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐶 ∈ V) | 
| 8 | ssexg 5323 | . . . . 5 ⊢ ((𝐷 ⊆ 𝐶 ∧ 𝐶 ∈ V) → 𝐷 ∈ V) | |
| 9 | 8 | ancoms 458 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ⊆ 𝐶) → 𝐷 ∈ V) | 
| 10 | 7, 9 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → 𝐷 ∈ V) | 
| 11 | 6, 10 | elmapd 8880 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → ((𝐴 ↾ 𝐷) ∈ (𝐵 ↑m 𝐷) ↔ (𝐴 ↾ 𝐷):𝐷⟶𝐵)) | 
| 12 | 3, 11 | mpbird 257 | 1 ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷) ∈ (𝐵 ↑m 𝐷)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3480 ⊆ wss 3951 ↾ cres 5687 ⟶wf 6557 (class class class)co 7431 ↑m cmap 8866 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-map 8868 | 
| This theorem is referenced by: nn0gsumfz 20002 mdetmul 22629 elmapssresd 42282 mapfzcons1cl 42729 mzpcompact2lem 42762 diophin 42783 eldiophss 42785 eldioph4b 42822 tfsconcatrev 43361 mccllem 45612 iccpartres 47405 lincresunit3lem2 48397 | 
| Copyright terms: Public domain | W3C validator |