![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elmapssres | Structured version Visualization version GIF version |
Description: A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
elmapssres | ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷) ∈ (𝐵 ↑m 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 8907 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
2 | fssres 6787 | . . 3 ⊢ ((𝐴:𝐶⟶𝐵 ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷):𝐷⟶𝐵) | |
3 | 1, 2 | sylan 579 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷):𝐷⟶𝐵) |
4 | elmapex 8906 | . . . . 5 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) | |
5 | 4 | simpld 494 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐵 ∈ V) |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → 𝐵 ∈ V) |
7 | 4 | simprd 495 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐶 ∈ V) |
8 | ssexg 5341 | . . . . 5 ⊢ ((𝐷 ⊆ 𝐶 ∧ 𝐶 ∈ V) → 𝐷 ∈ V) | |
9 | 8 | ancoms 458 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ⊆ 𝐶) → 𝐷 ∈ V) |
10 | 7, 9 | sylan 579 | . . 3 ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → 𝐷 ∈ V) |
11 | 6, 10 | elmapd 8898 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → ((𝐴 ↾ 𝐷) ∈ (𝐵 ↑m 𝐷) ↔ (𝐴 ↾ 𝐷):𝐷⟶𝐵)) |
12 | 3, 11 | mpbird 257 | 1 ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷) ∈ (𝐵 ↑m 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ↾ cres 5702 ⟶wf 6569 (class class class)co 7448 ↑m cmap 8884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 |
This theorem is referenced by: nn0gsumfz 20026 mdetmul 22650 elmapssresd 42236 mapfzcons1cl 42674 mzpcompact2lem 42707 diophin 42728 eldiophss 42730 eldioph4b 42767 tfsconcatrev 43310 mccllem 45518 iccpartres 47292 lincresunit3lem2 48209 |
Copyright terms: Public domain | W3C validator |