| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elmapssres | Structured version Visualization version GIF version | ||
| Description: A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.) |
| Ref | Expression |
|---|---|
| elmapssres | ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷) ∈ (𝐵 ↑m 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 8779 | . . 3 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐴:𝐶⟶𝐵) | |
| 2 | fssres 6694 | . . 3 ⊢ ((𝐴:𝐶⟶𝐵 ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷):𝐷⟶𝐵) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷):𝐷⟶𝐵) |
| 4 | elmapex 8778 | . . . . 5 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V)) | |
| 5 | 4 | simpld 494 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐵 ∈ V) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → 𝐵 ∈ V) |
| 7 | 4 | simprd 495 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ↑m 𝐶) → 𝐶 ∈ V) |
| 8 | ssexg 5263 | . . . . 5 ⊢ ((𝐷 ⊆ 𝐶 ∧ 𝐶 ∈ V) → 𝐷 ∈ V) | |
| 9 | 8 | ancoms 458 | . . . 4 ⊢ ((𝐶 ∈ V ∧ 𝐷 ⊆ 𝐶) → 𝐷 ∈ V) |
| 10 | 7, 9 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → 𝐷 ∈ V) |
| 11 | 6, 10 | elmapd 8770 | . 2 ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → ((𝐴 ↾ 𝐷) ∈ (𝐵 ↑m 𝐷) ↔ (𝐴 ↾ 𝐷):𝐷⟶𝐵)) |
| 12 | 3, 11 | mpbird 257 | 1 ⊢ ((𝐴 ∈ (𝐵 ↑m 𝐶) ∧ 𝐷 ⊆ 𝐶) → (𝐴 ↾ 𝐷) ∈ (𝐵 ↑m 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 ↾ cres 5621 ⟶wf 6482 (class class class)co 7352 ↑m cmap 8756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 |
| This theorem is referenced by: nn0gsumfz 19898 mdetmul 22539 elmapssresd 42360 mapfzcons1cl 42836 mzpcompact2lem 42869 diophin 42890 eldiophss 42892 eldioph4b 42929 tfsconcatrev 43466 mccllem 45722 iccpartres 47543 lincresunit3lem2 48606 |
| Copyright terms: Public domain | W3C validator |