MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmapssres Structured version   Visualization version   GIF version

Theorem elmapssres 8686
Description: A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
Assertion
Ref Expression
elmapssres ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → (𝐴𝐷) ∈ (𝐵m 𝐷))

Proof of Theorem elmapssres
StepHypRef Expression
1 elmapi 8668 . . 3 (𝐴 ∈ (𝐵m 𝐶) → 𝐴:𝐶𝐵)
2 fssres 6670 . . 3 ((𝐴:𝐶𝐵𝐷𝐶) → (𝐴𝐷):𝐷𝐵)
31, 2sylan 581 . 2 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → (𝐴𝐷):𝐷𝐵)
4 elmapex 8667 . . . . 5 (𝐴 ∈ (𝐵m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
54simpld 496 . . . 4 (𝐴 ∈ (𝐵m 𝐶) → 𝐵 ∈ V)
65adantr 482 . . 3 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → 𝐵 ∈ V)
74simprd 497 . . . 4 (𝐴 ∈ (𝐵m 𝐶) → 𝐶 ∈ V)
8 ssexg 5256 . . . . 5 ((𝐷𝐶𝐶 ∈ V) → 𝐷 ∈ V)
98ancoms 460 . . . 4 ((𝐶 ∈ V ∧ 𝐷𝐶) → 𝐷 ∈ V)
107, 9sylan 581 . . 3 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → 𝐷 ∈ V)
116, 10elmapd 8660 . 2 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → ((𝐴𝐷) ∈ (𝐵m 𝐷) ↔ (𝐴𝐷):𝐷𝐵))
123, 11mpbird 257 1 ((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → (𝐴𝐷) ∈ (𝐵m 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2104  Vcvv 3437  wss 3892  cres 5602  wf 6454  (class class class)co 7307  m cmap 8646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864  df-map 8648
This theorem is referenced by:  nn0gsumfz  19630  mdetmul  21817  mapfzcons1cl  40577  mzpcompact2lem  40610  diophin  40631  eldiophss  40633  eldioph4b  40670  mccllem  43187  iccpartres  44928  lincresunit3lem2  45879
  Copyright terms: Public domain W3C validator