Step | Hyp | Ref
| Expression |
1 | | 2pthfrgr.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | eqid 2738 |
. . 3
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
3 | 1, 2 | 2pthfrgrrn2 28548 |
. 2
⊢ (𝐺 ∈ FriendGraph →
∀𝑎 ∈ 𝑉 ∀𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑚 ∈ 𝑉 (({𝑎, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑏} ∈ (Edg‘𝐺)) ∧ (𝑎 ≠ 𝑚 ∧ 𝑚 ≠ 𝑏))) |
4 | | frgrusgr 28526 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈
USGraph) |
5 | | usgruhgr 27456 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ USGraph → 𝐺 ∈
UHGraph) |
6 | 4, 5 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈
UHGraph) |
7 | 6 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝑉) → 𝐺 ∈ UHGraph) |
8 | 7 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → 𝐺 ∈ UHGraph) |
9 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) ∧ 𝑚 ∈ 𝑉) → 𝐺 ∈ UHGraph) |
10 | | simpllr 772 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) ∧ 𝑚 ∈ 𝑉) → 𝑎 ∈ 𝑉) |
11 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) ∧ 𝑚 ∈ 𝑉) → 𝑚 ∈ 𝑉) |
12 | | eldifi 4057 |
. . . . . . . . . 10
⊢ (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑏 ∈ 𝑉) |
13 | 12 | ad2antlr 723 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) ∧ 𝑚 ∈ 𝑉) → 𝑏 ∈ 𝑉) |
14 | 10, 11, 13 | 3jca 1126 |
. . . . . . . 8
⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) ∧ 𝑚 ∈ 𝑉) → (𝑎 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
15 | 9, 14 | jca 511 |
. . . . . . 7
⊢ ((((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) ∧ 𝑚 ∈ 𝑉) → (𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
16 | 15 | adantr 480 |
. . . . . 6
⊢
(((((𝐺 ∈
FriendGraph ∧ 𝑎 ∈
𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) ∧ 𝑚 ∈ 𝑉) ∧ (({𝑎, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑏} ∈ (Edg‘𝐺)) ∧ (𝑎 ≠ 𝑚 ∧ 𝑚 ≠ 𝑏))) → (𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
17 | | simprrl 777 |
. . . . . 6
⊢
(((((𝐺 ∈
FriendGraph ∧ 𝑎 ∈
𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) ∧ 𝑚 ∈ 𝑉) ∧ (({𝑎, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑏} ∈ (Edg‘𝐺)) ∧ (𝑎 ≠ 𝑚 ∧ 𝑚 ≠ 𝑏))) → 𝑎 ≠ 𝑚) |
18 | | eldifsn 4717 |
. . . . . . . 8
⊢ (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑏 ∈ 𝑉 ∧ 𝑏 ≠ 𝑎)) |
19 | | necom 2996 |
. . . . . . . . 9
⊢ (𝑏 ≠ 𝑎 ↔ 𝑎 ≠ 𝑏) |
20 | 19 | biimpi 215 |
. . . . . . . 8
⊢ (𝑏 ≠ 𝑎 → 𝑎 ≠ 𝑏) |
21 | 18, 20 | simplbiim 504 |
. . . . . . 7
⊢ (𝑏 ∈ (𝑉 ∖ {𝑎}) → 𝑎 ≠ 𝑏) |
22 | 21 | ad3antlr 727 |
. . . . . 6
⊢
(((((𝐺 ∈
FriendGraph ∧ 𝑎 ∈
𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) ∧ 𝑚 ∈ 𝑉) ∧ (({𝑎, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑏} ∈ (Edg‘𝐺)) ∧ (𝑎 ≠ 𝑚 ∧ 𝑚 ≠ 𝑏))) → 𝑎 ≠ 𝑏) |
23 | | simprrr 778 |
. . . . . 6
⊢
(((((𝐺 ∈
FriendGraph ∧ 𝑎 ∈
𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) ∧ 𝑚 ∈ 𝑉) ∧ (({𝑎, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑏} ∈ (Edg‘𝐺)) ∧ (𝑎 ≠ 𝑚 ∧ 𝑚 ≠ 𝑏))) → 𝑚 ≠ 𝑏) |
24 | | simprl 767 |
. . . . . 6
⊢
(((((𝐺 ∈
FriendGraph ∧ 𝑎 ∈
𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) ∧ 𝑚 ∈ 𝑉) ∧ (({𝑎, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑏} ∈ (Edg‘𝐺)) ∧ (𝑎 ≠ 𝑚 ∧ 𝑚 ≠ 𝑏))) → ({𝑎, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑏} ∈ (Edg‘𝐺))) |
25 | 1, 2 | 2pthon3v 28209 |
. . . . . 6
⊢ (((𝐺 ∈ UHGraph ∧ (𝑎 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) ∧ (𝑎 ≠ 𝑚 ∧ 𝑎 ≠ 𝑏 ∧ 𝑚 ≠ 𝑏) ∧ ({𝑎, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑏} ∈ (Edg‘𝐺))) → ∃𝑓∃𝑝(𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑝 ∧ (♯‘𝑓) = 2)) |
26 | 16, 17, 22, 23, 24, 25 | syl131anc 1381 |
. . . . 5
⊢
(((((𝐺 ∈
FriendGraph ∧ 𝑎 ∈
𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) ∧ 𝑚 ∈ 𝑉) ∧ (({𝑎, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑏} ∈ (Edg‘𝐺)) ∧ (𝑎 ≠ 𝑚 ∧ 𝑚 ≠ 𝑏))) → ∃𝑓∃𝑝(𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑝 ∧ (♯‘𝑓) = 2)) |
27 | 26 | rexlimdva2 3215 |
. . . 4
⊢ (((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝑉) ∧ 𝑏 ∈ (𝑉 ∖ {𝑎})) → (∃𝑚 ∈ 𝑉 (({𝑎, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑏} ∈ (Edg‘𝐺)) ∧ (𝑎 ≠ 𝑚 ∧ 𝑚 ≠ 𝑏)) → ∃𝑓∃𝑝(𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑝 ∧ (♯‘𝑓) = 2))) |
28 | 27 | ralimdva 3102 |
. . 3
⊢ ((𝐺 ∈ FriendGraph ∧ 𝑎 ∈ 𝑉) → (∀𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑚 ∈ 𝑉 (({𝑎, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑏} ∈ (Edg‘𝐺)) ∧ (𝑎 ≠ 𝑚 ∧ 𝑚 ≠ 𝑏)) → ∀𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑓∃𝑝(𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑝 ∧ (♯‘𝑓) = 2))) |
29 | 28 | ralimdva 3102 |
. 2
⊢ (𝐺 ∈ FriendGraph →
(∀𝑎 ∈ 𝑉 ∀𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑚 ∈ 𝑉 (({𝑎, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑏} ∈ (Edg‘𝐺)) ∧ (𝑎 ≠ 𝑚 ∧ 𝑚 ≠ 𝑏)) → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑓∃𝑝(𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑝 ∧ (♯‘𝑓) = 2))) |
30 | 3, 29 | mpd 15 |
1
⊢ (𝐺 ∈ FriendGraph →
∀𝑎 ∈ 𝑉 ∀𝑏 ∈ (𝑉 ∖ {𝑎})∃𝑓∃𝑝(𝑓(𝑎(SPathsOn‘𝐺)𝑏)𝑝 ∧ (♯‘𝑓) = 2)) |