Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr2wsp1 Structured version   Visualization version   GIF version

Theorem frgr2wsp1 28215
 Description: In a friendship graph, there is exactly one simple path of length 2 between two different vertices. (Contributed by Alexander van der Vekens, 3-Mar-2018.) (Revised by AV, 13-May-2021.)
Hypothesis
Ref Expression
frgr2wwlkeu.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgr2wsp1 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (♯‘(𝐴(2 WSPathsNOn 𝐺)𝐵)) = 1)

Proof of Theorem frgr2wsp1
StepHypRef Expression
1 frgrusgr 28146 . . . . 5 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
2 wpthswwlks2on 27847 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝐴𝐵) → (𝐴(2 WSPathsNOn 𝐺)𝐵) = (𝐴(2 WWalksNOn 𝐺)𝐵))
31, 2sylan 584 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵) → (𝐴(2 WSPathsNOn 𝐺)𝐵) = (𝐴(2 WWalksNOn 𝐺)𝐵))
433adant2 1129 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐴(2 WSPathsNOn 𝐺)𝐵) = (𝐴(2 WWalksNOn 𝐺)𝐵))
54fveq2d 6663 . 2 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (♯‘(𝐴(2 WSPathsNOn 𝐺)𝐵)) = (♯‘(𝐴(2 WWalksNOn 𝐺)𝐵)))
6 frgr2wwlkeu.v . . 3 𝑉 = (Vtx‘𝐺)
76frgr2wwlk1 28214 . 2 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (♯‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1)
85, 7eqtrd 2794 1 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (♯‘(𝐴(2 WSPathsNOn 𝐺)𝐵)) = 1)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112   ≠ wne 2952  ‘cfv 6336  (class class class)co 7151  1c1 10577  2c2 11730  ♯chash 13741  Vtxcvtx 26889  USGraphcusgr 27042   WWalksNOn cwwlksnon 27713   WSPathsNOn cwwspthsnon 27715   FriendGraph cfrgr 28143 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-ac2 9924  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-oadd 8117  df-er 8300  df-map 8419  df-pm 8420  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-dju 9364  df-card 9402  df-ac 9577  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-nn 11676  df-2 11738  df-3 11739  df-n0 11936  df-xnn0 12008  df-z 12022  df-uz 12284  df-fz 12941  df-fzo 13084  df-hash 13742  df-word 13915  df-concat 13971  df-s1 13998  df-s2 14258  df-s3 14259  df-edg 26941  df-uhgr 26951  df-upgr 26975  df-umgr 26976  df-uspgr 27043  df-usgr 27044  df-wlks 27489  df-wlkson 27490  df-trls 27582  df-trlson 27583  df-pths 27605  df-spths 27606  df-pthson 27607  df-spthson 27608  df-wwlks 27716  df-wwlksn 27717  df-wwlksnon 27718  df-wspthsnon 27720  df-frgr 28144 This theorem is referenced by:  frgrhash2wsp  28217
 Copyright terms: Public domain W3C validator