MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frr2 Structured version   Visualization version   GIF version

Theorem frr2 9376
Description: Law of general well-founded recursion, part two. Now we establish the value of 𝐹 within 𝐴. (Contributed by Scott Fenton, 11-Sep-2023.)
Hypothesis
Ref Expression
frr.1 𝐹 = frecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
frr2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑋𝐴) → (𝐹𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))

Proof of Theorem frr2
Dummy variables 𝑥 𝑦 𝑢 𝑣 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frr.1 . . . . . 6 𝐹 = frecs(𝑅, 𝐴, 𝐺)
21frr1 9375 . . . . 5 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)
32fndmd 6483 . . . 4 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → dom 𝐹 = 𝐴)
43eleq2d 2823 . . 3 ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝑋 ∈ dom 𝐹𝑋𝐴))
54pm5.32i 578 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) ↔ ((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑋𝐴))
6 fveq2 6717 . . . . . 6 (𝑦 = 𝑋 → (𝐹𝑦) = (𝐹𝑋))
7 id 22 . . . . . . 7 (𝑦 = 𝑋𝑦 = 𝑋)
8 predeq3 6164 . . . . . . . 8 (𝑦 = 𝑋 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑋))
98reseq2d 5851 . . . . . . 7 (𝑦 = 𝑋 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))
107, 9oveq12d 7231 . . . . . 6 (𝑦 = 𝑋 → (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
116, 10eqeq12d 2753 . . . . 5 (𝑦 = 𝑋 → ((𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))))
1211imbi2d 344 . . . 4 (𝑦 = 𝑋 → (((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝐹𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))))
13 eqid 2737 . . . . . . 7 {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))}
1413frrlem1 8027 . . . . . 6 {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
1514, 1frrlem15 9373 . . . . . 6 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ (𝑔 ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} ∧ ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏𝐴 ∧ ∀𝑐𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐𝑏 (𝑎𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))})) → ((𝑥𝑔𝑢𝑥𝑣) → 𝑢 = 𝑣))
1614, 1, 15frrlem10 8036 . . . . 5 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑦 ∈ dom 𝐹) → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))
1716expcom 417 . . . 4 (𝑦 ∈ dom 𝐹 → ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝐹𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))))
1812, 17vtoclga 3489 . . 3 (𝑋 ∈ dom 𝐹 → ((𝑅 Fr 𝐴𝑅 Se 𝐴) → (𝐹𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))))
1918impcom 411 . 2 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
205, 19sylbir 238 1 (((𝑅 Fr 𝐴𝑅 Se 𝐴) ∧ 𝑋𝐴) → (𝐹𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2110  {cab 2714  wral 3061  wss 3866   Fr wfr 5506   Se wse 5507  dom cdm 5551  cres 5553  Predcpred 6159   Fn wfn 6375  cfv 6380  (class class class)co 7213  frecscfrecs 8022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523  ax-inf2 9256
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-om 7645  df-frecs 8023  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-trpred 9323
This theorem is referenced by:  frr3  9377
  Copyright terms: Public domain W3C validator