![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frr2 | Structured version Visualization version GIF version |
Description: Law of general well-founded recursion, part two. Now we establish the value of 𝐹 within 𝐴. (Contributed by Scott Fenton, 11-Sep-2023.) |
Ref | Expression |
---|---|
frr.1 | ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
Ref | Expression |
---|---|
frr2 | ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frr.1 | . . . . . 6 ⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) | |
2 | 1 | frr1 9828 | . . . . 5 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) |
3 | 2 | fndmd 6684 | . . . 4 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → dom 𝐹 = 𝐴) |
4 | 3 | eleq2d 2830 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ 𝐴)) |
5 | 4 | pm5.32i 574 | . 2 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) ↔ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ 𝐴)) |
6 | fveq2 6920 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) | |
7 | id 22 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → 𝑦 = 𝑋) | |
8 | predeq3 6336 | . . . . . . . 8 ⊢ (𝑦 = 𝑋 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑋)) | |
9 | 8 | reseq2d 6009 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))) |
10 | 7, 9 | oveq12d 7466 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
11 | 6, 10 | eqeq12d 2756 | . . . . 5 ⊢ (𝑦 = 𝑋 → ((𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹‘𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))) |
12 | 11 | imbi2d 340 | . . . 4 ⊢ (𝑦 = 𝑋 → (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → (𝐹‘𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))))) |
13 | eqid 2740 | . . . . . . 7 ⊢ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} | |
14 | 13 | frrlem1 8327 | . . . . . 6 ⊢ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
15 | 14, 1 | frrlem15 9826 | . . . . . 6 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} ∧ ℎ ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))})) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
16 | 14, 1, 15 | frrlem10 8336 | . . . . 5 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑦 ∈ dom 𝐹) → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
17 | 16 | expcom 413 | . . . 4 ⊢ (𝑦 ∈ dom 𝐹 → ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
18 | 12, 17 | vtoclga 3589 | . . 3 ⊢ (𝑋 ∈ dom 𝐹 → ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → (𝐹‘𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))) |
19 | 18 | impcom 407 | . 2 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
20 | 5, 19 | sylbir 235 | 1 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 ∀wral 3067 ⊆ wss 3976 Fr wfr 5649 Se wse 5650 dom cdm 5700 ↾ cres 5702 Predcpred 6331 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 frecscfrecs 8321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-ttrcl 9777 |
This theorem is referenced by: frr3 9830 |
Copyright terms: Public domain | W3C validator |