Step | Hyp | Ref
| Expression |
1 | | frr.1 |
. . . . . 6
⊢ 𝐹 = frecs(𝑅, 𝐴, 𝐺) |
2 | 1 | frr1 9448 |
. . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) |
3 | 2 | fndmd 6522 |
. . . 4
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → dom 𝐹 = 𝐴) |
4 | 3 | eleq2d 2824 |
. . 3
⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ 𝐴)) |
5 | 4 | pm5.32i 574 |
. 2
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) ↔ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ 𝐴)) |
6 | | fveq2 6756 |
. . . . . 6
⊢ (𝑦 = 𝑋 → (𝐹‘𝑦) = (𝐹‘𝑋)) |
7 | | id 22 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → 𝑦 = 𝑋) |
8 | | predeq3 6195 |
. . . . . . . 8
⊢ (𝑦 = 𝑋 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑋)) |
9 | 8 | reseq2d 5880 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))) |
10 | 7, 9 | oveq12d 7273 |
. . . . . 6
⊢ (𝑦 = 𝑋 → (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
11 | 6, 10 | eqeq12d 2754 |
. . . . 5
⊢ (𝑦 = 𝑋 → ((𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹‘𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))) |
12 | 11 | imbi2d 340 |
. . . 4
⊢ (𝑦 = 𝑋 → (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → (𝐹‘𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))))) |
13 | | eqid 2738 |
. . . . . . 7
⊢ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} |
14 | 13 | frrlem1 8073 |
. . . . . 6
⊢ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
15 | 14, 1 | frrlem15 9446 |
. . . . . 6
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑔 ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))} ∧ ℎ ∈ {𝑎 ∣ ∃𝑏(𝑎 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑐 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑐) ⊆ 𝑏) ∧ ∀𝑐 ∈ 𝑏 (𝑎‘𝑐) = (𝑐𝐺(𝑎 ↾ Pred(𝑅, 𝐴, 𝑐))))})) → ((𝑥𝑔𝑢 ∧ 𝑥ℎ𝑣) → 𝑢 = 𝑣)) |
16 | 14, 1, 15 | frrlem10 8082 |
. . . . 5
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑦 ∈ dom 𝐹) → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) |
17 | 16 | expcom 413 |
. . . 4
⊢ (𝑦 ∈ dom 𝐹 → ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → (𝐹‘𝑦) = (𝑦𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))))) |
18 | 12, 17 | vtoclga 3503 |
. . 3
⊢ (𝑋 ∈ dom 𝐹 → ((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) → (𝐹‘𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋))))) |
19 | 18 | impcom 407 |
. 2
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹‘𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |
20 | 5, 19 | sylbir 234 |
1
⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = (𝑋𝐺(𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)))) |