Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovcnvfvd Structured version   Visualization version   GIF version

Theorem fsovcnvfvd 40634
 Description: The value of the converse of (𝐴𝑂𝐵), where 𝑂 is the operator which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, evaluated at function 𝐹. (Contributed by RP, 27-Apr-2021.)
Hypotheses
Ref Expression
fsovd.fs 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
fsovd.a (𝜑𝐴𝑉)
fsovd.b (𝜑𝐵𝑊)
fsovfvd.g 𝐺 = (𝐴𝑂𝐵)
fsovcnvfvd.f (𝜑𝐹 ∈ (𝒫 𝐴m 𝐵))
Assertion
Ref Expression
fsovcnvfvd (𝜑 → (𝐺𝐹) = (𝑦𝐴 ↦ {𝑥𝐵𝑦 ∈ (𝐹𝑥)}))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑥,𝑦   𝐵,𝑎,𝑏,𝑓,𝑥,𝑦   𝑓,𝐹,𝑥,𝑦   𝜑,𝑎,𝑏,𝑓,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑎,𝑏)   𝐺(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑓,𝑎,𝑏)

Proof of Theorem fsovcnvfvd
StepHypRef Expression
1 fsovd.fs . . . 4 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
2 fsovd.a . . . 4 (𝜑𝐴𝑉)
3 fsovd.b . . . 4 (𝜑𝐵𝑊)
4 fsovfvd.g . . . 4 𝐺 = (𝐴𝑂𝐵)
5 eqid 2824 . . . 4 (𝐵𝑂𝐴) = (𝐵𝑂𝐴)
61, 2, 3, 4, 5fsovcnvd 40633 . . 3 (𝜑𝐺 = (𝐵𝑂𝐴))
76fveq1d 6664 . 2 (𝜑 → (𝐺𝐹) = ((𝐵𝑂𝐴)‘𝐹))
8 fsovcnvfvd.f . . 3 (𝜑𝐹 ∈ (𝒫 𝐴m 𝐵))
91, 3, 2, 5, 8fsovfvd 40629 . 2 (𝜑 → ((𝐵𝑂𝐴)‘𝐹) = (𝑦𝐴 ↦ {𝑥𝐵𝑦 ∈ (𝐹𝑥)}))
107, 9eqtrd 2859 1 (𝜑 → (𝐺𝐹) = (𝑦𝐴 ↦ {𝑥𝐵𝑦 ∈ (𝐹𝑥)}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2115  {crab 3137  Vcvv 3481  𝒫 cpw 4523   ↦ cmpt 5133  ◡ccnv 5542  ‘cfv 6344  (class class class)co 7150   ∈ cmpo 7152   ↑m cmap 8403 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-op 4558  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7685  df-2nd 7686  df-map 8405 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator