Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovcnvfvd Structured version   Visualization version   GIF version

Theorem fsovcnvfvd 43977
Description: The value of the converse of (𝐴𝑂𝐵), where 𝑂 is the operator which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, evaluated at function 𝐹. (Contributed by RP, 27-Apr-2021.)
Hypotheses
Ref Expression
fsovd.fs 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
fsovd.a (𝜑𝐴𝑉)
fsovd.b (𝜑𝐵𝑊)
fsovfvd.g 𝐺 = (𝐴𝑂𝐵)
fsovcnvfvd.f (𝜑𝐹 ∈ (𝒫 𝐴m 𝐵))
Assertion
Ref Expression
fsovcnvfvd (𝜑 → (𝐺𝐹) = (𝑦𝐴 ↦ {𝑥𝐵𝑦 ∈ (𝐹𝑥)}))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑥,𝑦   𝐵,𝑎,𝑏,𝑓,𝑥,𝑦   𝑓,𝐹,𝑥,𝑦   𝜑,𝑎,𝑏,𝑓,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐹(𝑎,𝑏)   𝐺(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑓,𝑎,𝑏)

Proof of Theorem fsovcnvfvd
StepHypRef Expression
1 fsovd.fs . . . 4 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
2 fsovd.a . . . 4 (𝜑𝐴𝑉)
3 fsovd.b . . . 4 (𝜑𝐵𝑊)
4 fsovfvd.g . . . 4 𝐺 = (𝐴𝑂𝐵)
5 eqid 2729 . . . 4 (𝐵𝑂𝐴) = (𝐵𝑂𝐴)
61, 2, 3, 4, 5fsovcnvd 43976 . . 3 (𝜑𝐺 = (𝐵𝑂𝐴))
76fveq1d 6842 . 2 (𝜑 → (𝐺𝐹) = ((𝐵𝑂𝐴)‘𝐹))
8 fsovcnvfvd.f . . 3 (𝜑𝐹 ∈ (𝒫 𝐴m 𝐵))
91, 3, 2, 5, 8fsovfvd 43972 . 2 (𝜑 → ((𝐵𝑂𝐴)‘𝐹) = (𝑦𝐴 ↦ {𝑥𝐵𝑦 ∈ (𝐹𝑥)}))
107, 9eqtrd 2764 1 (𝜑 → (𝐺𝐹) = (𝑦𝐴 ↦ {𝑥𝐵𝑦 ∈ (𝐹𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  𝒫 cpw 4559  cmpt 5183  ccnv 5630  cfv 6499  (class class class)co 7369  cmpo 7371  m cmap 8776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator