![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsovfvd | Structured version Visualization version GIF version |
Description: Value of the operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, when applied to function 𝐹. (Contributed by RP, 25-Apr-2021.) |
Ref | Expression |
---|---|
fsovd.fs | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
fsovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fsovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
fsovfvd.g | ⊢ 𝐺 = (𝐴𝑂𝐵) |
fsovfvd.f | ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑𝑚 𝐴)) |
Ref | Expression |
---|---|
fsovfvd | ⊢ (𝜑 → (𝐺‘𝐹) = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝐹‘𝑥)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsovfvd.g | . . 3 ⊢ 𝐺 = (𝐴𝑂𝐵) | |
2 | fsovd.fs | . . . 4 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑𝑚 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) | |
3 | fsovd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | fsovd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
5 | 2, 3, 4 | fsovd 39258 | . . 3 ⊢ (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
6 | 1, 5 | syl5eq 2826 | . 2 ⊢ (𝜑 → 𝐺 = (𝑓 ∈ (𝒫 𝐵 ↑𝑚 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
7 | fveq1 6445 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
8 | 7 | eleq2d 2845 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑦 ∈ (𝑓‘𝑥) ↔ 𝑦 ∈ (𝐹‘𝑥))) |
9 | 8 | rabbidv 3386 | . . . 4 ⊢ (𝑓 = 𝐹 → {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝐹‘𝑥)}) |
10 | 9 | mpteq2dv 4980 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝐹‘𝑥)})) |
11 | 10 | adantl 475 | . 2 ⊢ ((𝜑 ∧ 𝑓 = 𝐹) → (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝐹‘𝑥)})) |
12 | fsovfvd.f | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑𝑚 𝐴)) | |
13 | mptexg 6756 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝐹‘𝑥)}) ∈ V) | |
14 | 4, 13 | syl 17 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝐹‘𝑥)}) ∈ V) |
15 | 6, 11, 12, 14 | fvmptd 6548 | 1 ⊢ (𝜑 → (𝐺‘𝐹) = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝐹‘𝑥)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 {crab 3094 Vcvv 3398 𝒫 cpw 4379 ↦ cmpt 4965 ‘cfv 6135 (class class class)co 6922 ↦ cmpt2 6924 ↑𝑚 cmap 8140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 |
This theorem is referenced by: fsovfvfvd 39261 fsovcnvfvd 39265 |
Copyright terms: Public domain | W3C validator |