Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovfvd Structured version   Visualization version   GIF version

Theorem fsovfvd 44042
Description: Value of the operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, when applied to function 𝐹. (Contributed by RP, 25-Apr-2021.)
Hypotheses
Ref Expression
fsovd.fs 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
fsovd.a (𝜑𝐴𝑉)
fsovd.b (𝜑𝐵𝑊)
fsovfvd.g 𝐺 = (𝐴𝑂𝐵)
fsovfvd.f (𝜑𝐹 ∈ (𝒫 𝐵m 𝐴))
Assertion
Ref Expression
fsovfvd (𝜑 → (𝐺𝐹) = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝐹𝑥)}))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑥   𝑦,𝐴,𝑎,𝑏,𝑓   𝐵,𝑎,𝑏,𝑓,𝑦   𝑓,𝐹,𝑥   𝑦,𝐹   𝜑,𝑎,𝑏,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)   𝐹(𝑎,𝑏)   𝐺(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑓,𝑎,𝑏)

Proof of Theorem fsovfvd
StepHypRef Expression
1 fsovfvd.g . . 3 𝐺 = (𝐴𝑂𝐵)
2 fsovd.fs . . . 4 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
3 fsovd.a . . . 4 (𝜑𝐴𝑉)
4 fsovd.b . . . 4 (𝜑𝐵𝑊)
52, 3, 4fsovd 44040 . . 3 (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
61, 5eqtrid 2778 . 2 (𝜑𝐺 = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
7 fveq1 6821 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
87eleq2d 2817 . . . . 5 (𝑓 = 𝐹 → (𝑦 ∈ (𝑓𝑥) ↔ 𝑦 ∈ (𝐹𝑥)))
98rabbidv 3402 . . . 4 (𝑓 = 𝐹 → {𝑥𝐴𝑦 ∈ (𝑓𝑥)} = {𝑥𝐴𝑦 ∈ (𝐹𝑥)})
109mpteq2dv 5185 . . 3 (𝑓 = 𝐹 → (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}) = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝐹𝑥)}))
1110adantl 481 . 2 ((𝜑𝑓 = 𝐹) → (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}) = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝐹𝑥)}))
12 fsovfvd.f . 2 (𝜑𝐹 ∈ (𝒫 𝐵m 𝐴))
134mptexd 7158 . 2 (𝜑 → (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝐹𝑥)}) ∈ V)
146, 11, 12, 13fvmptd 6936 1 (𝜑 → (𝐺𝐹) = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝐹𝑥)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  𝒫 cpw 4550  cmpt 5172  cfv 6481  (class class class)co 7346  cmpo 7348  m cmap 8750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351
This theorem is referenced by:  fsovfvfvd  44043  fsovcnvfvd  44047
  Copyright terms: Public domain W3C validator