Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovfvfvd Structured version   Visualization version   GIF version

Theorem fsovfvfvd 44017
Description: Value of the operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, when applied to function 𝐹 and element 𝑌. (Contributed by RP, 25-Apr-2021.)
Hypotheses
Ref Expression
fsovd.fs 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
fsovd.a (𝜑𝐴𝑉)
fsovd.b (𝜑𝐵𝑊)
fsovfvd.g 𝐺 = (𝐴𝑂𝐵)
fsovfvd.f (𝜑𝐹 ∈ (𝒫 𝐵m 𝐴))
fsovfvfvd.h 𝐻 = (𝐺𝐹)
fsovfvfvd.y (𝜑𝑌𝐵)
Assertion
Ref Expression
fsovfvfvd (𝜑 → (𝐻𝑌) = {𝑥𝐴𝑌 ∈ (𝐹𝑥)})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑥,𝑦   𝐵,𝑎,𝑏,𝑓,𝑦   𝑓,𝐹,𝑥,𝑦   𝑥,𝑌,𝑦   𝜑,𝑎,𝑏,𝑓,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑎,𝑏)   𝐺(𝑥,𝑦,𝑓,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑌(𝑓,𝑎,𝑏)

Proof of Theorem fsovfvfvd
StepHypRef Expression
1 fsovfvfvd.h . . 3 𝐻 = (𝐺𝐹)
2 fsovd.fs . . . 4 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
3 fsovd.a . . . 4 (𝜑𝐴𝑉)
4 fsovd.b . . . 4 (𝜑𝐵𝑊)
5 fsovfvd.g . . . 4 𝐺 = (𝐴𝑂𝐵)
6 fsovfvd.f . . . 4 (𝜑𝐹 ∈ (𝒫 𝐵m 𝐴))
72, 3, 4, 5, 6fsovfvd 44016 . . 3 (𝜑 → (𝐺𝐹) = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝐹𝑥)}))
81, 7eqtrid 2789 . 2 (𝜑𝐻 = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝐹𝑥)}))
9 eleq1 2829 . . . 4 (𝑦 = 𝑌 → (𝑦 ∈ (𝐹𝑥) ↔ 𝑌 ∈ (𝐹𝑥)))
109rabbidv 3444 . . 3 (𝑦 = 𝑌 → {𝑥𝐴𝑦 ∈ (𝐹𝑥)} = {𝑥𝐴𝑌 ∈ (𝐹𝑥)})
1110adantl 481 . 2 ((𝜑𝑦 = 𝑌) → {𝑥𝐴𝑦 ∈ (𝐹𝑥)} = {𝑥𝐴𝑌 ∈ (𝐹𝑥)})
12 fsovfvfvd.y . 2 (𝜑𝑌𝐵)
13 rabexg 5346 . . 3 (𝐴𝑉 → {𝑥𝐴𝑌 ∈ (𝐹𝑥)} ∈ V)
143, 13syl 17 . 2 (𝜑 → {𝑥𝐴𝑌 ∈ (𝐹𝑥)} ∈ V)
158, 11, 12, 14fvmptd 7030 1 (𝜑 → (𝐻𝑌) = {𝑥𝐴𝑌 ∈ (𝐹𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {crab 3436  Vcvv 3481  𝒫 cpw 4608  cmpt 5234  cfv 6569  (class class class)co 7438  cmpo 7440  m cmap 8874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443
This theorem is referenced by:  ntrneiel  44087
  Copyright terms: Public domain W3C validator