Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovfvfvd Structured version   Visualization version   GIF version

Theorem fsovfvfvd 40712
Description: Value of the operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, when applied to function 𝐹 and element 𝑌. (Contributed by RP, 25-Apr-2021.)
Hypotheses
Ref Expression
fsovd.fs 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
fsovd.a (𝜑𝐴𝑉)
fsovd.b (𝜑𝐵𝑊)
fsovfvd.g 𝐺 = (𝐴𝑂𝐵)
fsovfvd.f (𝜑𝐹 ∈ (𝒫 𝐵m 𝐴))
fsovfvfvd.h 𝐻 = (𝐺𝐹)
fsovfvfvd.y (𝜑𝑌𝐵)
Assertion
Ref Expression
fsovfvfvd (𝜑 → (𝐻𝑌) = {𝑥𝐴𝑌 ∈ (𝐹𝑥)})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑥,𝑦   𝐵,𝑎,𝑏,𝑓,𝑦   𝑓,𝐹,𝑥,𝑦   𝑥,𝑌,𝑦   𝜑,𝑎,𝑏,𝑓,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑎,𝑏)   𝐺(𝑥,𝑦,𝑓,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑌(𝑓,𝑎,𝑏)

Proof of Theorem fsovfvfvd
StepHypRef Expression
1 fsovfvfvd.h . . 3 𝐻 = (𝐺𝐹)
2 fsovd.fs . . . 4 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
3 fsovd.a . . . 4 (𝜑𝐴𝑉)
4 fsovd.b . . . 4 (𝜑𝐵𝑊)
5 fsovfvd.g . . . 4 𝐺 = (𝐴𝑂𝐵)
6 fsovfvd.f . . . 4 (𝜑𝐹 ∈ (𝒫 𝐵m 𝐴))
72, 3, 4, 5, 6fsovfvd 40711 . . 3 (𝜑 → (𝐺𝐹) = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝐹𝑥)}))
81, 7syl5eq 2845 . 2 (𝜑𝐻 = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝐹𝑥)}))
9 eleq1 2877 . . . 4 (𝑦 = 𝑌 → (𝑦 ∈ (𝐹𝑥) ↔ 𝑌 ∈ (𝐹𝑥)))
109rabbidv 3427 . . 3 (𝑦 = 𝑌 → {𝑥𝐴𝑦 ∈ (𝐹𝑥)} = {𝑥𝐴𝑌 ∈ (𝐹𝑥)})
1110adantl 485 . 2 ((𝜑𝑦 = 𝑌) → {𝑥𝐴𝑦 ∈ (𝐹𝑥)} = {𝑥𝐴𝑌 ∈ (𝐹𝑥)})
12 fsovfvfvd.y . 2 (𝜑𝑌𝐵)
13 rabexg 5198 . . 3 (𝐴𝑉 → {𝑥𝐴𝑌 ∈ (𝐹𝑥)} ∈ V)
143, 13syl 17 . 2 (𝜑 → {𝑥𝐴𝑌 ∈ (𝐹𝑥)} ∈ V)
158, 11, 12, 14fvmptd 6752 1 (𝜑 → (𝐻𝑌) = {𝑥𝐴𝑌 ∈ (𝐹𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441  𝒫 cpw 4497  cmpt 5110  cfv 6324  (class class class)co 7135  cmpo 7137  m cmap 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140
This theorem is referenced by:  ntrneiel  40784
  Copyright terms: Public domain W3C validator