Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovfvfvd Structured version   Visualization version   GIF version

Theorem fsovfvfvd 43506
Description: Value of the operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, when applied to function 𝐹 and element 𝑌. (Contributed by RP, 25-Apr-2021.)
Hypotheses
Ref Expression
fsovd.fs 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
fsovd.a (𝜑𝐴𝑉)
fsovd.b (𝜑𝐵𝑊)
fsovfvd.g 𝐺 = (𝐴𝑂𝐵)
fsovfvd.f (𝜑𝐹 ∈ (𝒫 𝐵m 𝐴))
fsovfvfvd.h 𝐻 = (𝐺𝐹)
fsovfvfvd.y (𝜑𝑌𝐵)
Assertion
Ref Expression
fsovfvfvd (𝜑 → (𝐻𝑌) = {𝑥𝐴𝑌 ∈ (𝐹𝑥)})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑥,𝑦   𝐵,𝑎,𝑏,𝑓,𝑦   𝑓,𝐹,𝑥,𝑦   𝑥,𝑌,𝑦   𝜑,𝑎,𝑏,𝑓,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑎,𝑏)   𝐺(𝑥,𝑦,𝑓,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑌(𝑓,𝑎,𝑏)

Proof of Theorem fsovfvfvd
StepHypRef Expression
1 fsovfvfvd.h . . 3 𝐻 = (𝐺𝐹)
2 fsovd.fs . . . 4 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
3 fsovd.a . . . 4 (𝜑𝐴𝑉)
4 fsovd.b . . . 4 (𝜑𝐵𝑊)
5 fsovfvd.g . . . 4 𝐺 = (𝐴𝑂𝐵)
6 fsovfvd.f . . . 4 (𝜑𝐹 ∈ (𝒫 𝐵m 𝐴))
72, 3, 4, 5, 6fsovfvd 43505 . . 3 (𝜑 → (𝐺𝐹) = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝐹𝑥)}))
81, 7eqtrid 2777 . 2 (𝜑𝐻 = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝐹𝑥)}))
9 eleq1 2813 . . . 4 (𝑦 = 𝑌 → (𝑦 ∈ (𝐹𝑥) ↔ 𝑌 ∈ (𝐹𝑥)))
109rabbidv 3427 . . 3 (𝑦 = 𝑌 → {𝑥𝐴𝑦 ∈ (𝐹𝑥)} = {𝑥𝐴𝑌 ∈ (𝐹𝑥)})
1110adantl 480 . 2 ((𝜑𝑦 = 𝑌) → {𝑥𝐴𝑦 ∈ (𝐹𝑥)} = {𝑥𝐴𝑌 ∈ (𝐹𝑥)})
12 fsovfvfvd.y . 2 (𝜑𝑌𝐵)
13 rabexg 5328 . . 3 (𝐴𝑉 → {𝑥𝐴𝑌 ∈ (𝐹𝑥)} ∈ V)
143, 13syl 17 . 2 (𝜑 → {𝑥𝐴𝑌 ∈ (𝐹𝑥)} ∈ V)
158, 11, 12, 14fvmptd 7007 1 (𝜑 → (𝐻𝑌) = {𝑥𝐴𝑌 ∈ (𝐹𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {crab 3419  Vcvv 3463  𝒫 cpw 4598  cmpt 5226  cfv 6543  (class class class)co 7416  cmpo 7418  m cmap 8843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7419  df-oprab 7420  df-mpo 7421
This theorem is referenced by:  ntrneiel  43576
  Copyright terms: Public domain W3C validator