Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovfvfvd Structured version   Visualization version   GIF version

Theorem fsovfvfvd 41508
Description: Value of the operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, when applied to function 𝐹 and element 𝑌. (Contributed by RP, 25-Apr-2021.)
Hypotheses
Ref Expression
fsovd.fs 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
fsovd.a (𝜑𝐴𝑉)
fsovd.b (𝜑𝐵𝑊)
fsovfvd.g 𝐺 = (𝐴𝑂𝐵)
fsovfvd.f (𝜑𝐹 ∈ (𝒫 𝐵m 𝐴))
fsovfvfvd.h 𝐻 = (𝐺𝐹)
fsovfvfvd.y (𝜑𝑌𝐵)
Assertion
Ref Expression
fsovfvfvd (𝜑 → (𝐻𝑌) = {𝑥𝐴𝑌 ∈ (𝐹𝑥)})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓,𝑥,𝑦   𝐵,𝑎,𝑏,𝑓,𝑦   𝑓,𝐹,𝑥,𝑦   𝑥,𝑌,𝑦   𝜑,𝑎,𝑏,𝑓,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑎,𝑏)   𝐺(𝑥,𝑦,𝑓,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑌(𝑓,𝑎,𝑏)

Proof of Theorem fsovfvfvd
StepHypRef Expression
1 fsovfvfvd.h . . 3 𝐻 = (𝐺𝐹)
2 fsovd.fs . . . 4 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
3 fsovd.a . . . 4 (𝜑𝐴𝑉)
4 fsovd.b . . . 4 (𝜑𝐵𝑊)
5 fsovfvd.g . . . 4 𝐺 = (𝐴𝑂𝐵)
6 fsovfvd.f . . . 4 (𝜑𝐹 ∈ (𝒫 𝐵m 𝐴))
72, 3, 4, 5, 6fsovfvd 41507 . . 3 (𝜑 → (𝐺𝐹) = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝐹𝑥)}))
81, 7syl5eq 2791 . 2 (𝜑𝐻 = (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝐹𝑥)}))
9 eleq1 2826 . . . 4 (𝑦 = 𝑌 → (𝑦 ∈ (𝐹𝑥) ↔ 𝑌 ∈ (𝐹𝑥)))
109rabbidv 3404 . . 3 (𝑦 = 𝑌 → {𝑥𝐴𝑦 ∈ (𝐹𝑥)} = {𝑥𝐴𝑌 ∈ (𝐹𝑥)})
1110adantl 481 . 2 ((𝜑𝑦 = 𝑌) → {𝑥𝐴𝑦 ∈ (𝐹𝑥)} = {𝑥𝐴𝑌 ∈ (𝐹𝑥)})
12 fsovfvfvd.y . 2 (𝜑𝑌𝐵)
13 rabexg 5250 . . 3 (𝐴𝑉 → {𝑥𝐴𝑌 ∈ (𝐹𝑥)} ∈ V)
143, 13syl 17 . 2 (𝜑 → {𝑥𝐴𝑌 ∈ (𝐹𝑥)} ∈ V)
158, 11, 12, 14fvmptd 6864 1 (𝜑 → (𝐻𝑌) = {𝑥𝐴𝑌 ∈ (𝐹𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {crab 3067  Vcvv 3422  𝒫 cpw 4530  cmpt 5153  cfv 6418  (class class class)co 7255  cmpo 7257  m cmap 8573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  ntrneiel  41580
  Copyright terms: Public domain W3C validator