![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsovfvfvd | Structured version Visualization version GIF version |
Description: Value of the operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, when applied to function 𝐹 and element 𝑌. (Contributed by RP, 25-Apr-2021.) |
Ref | Expression |
---|---|
fsovd.fs | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
fsovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
fsovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
fsovfvd.g | ⊢ 𝐺 = (𝐴𝑂𝐵) |
fsovfvd.f | ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑m 𝐴)) |
fsovfvfvd.h | ⊢ 𝐻 = (𝐺‘𝐹) |
fsovfvfvd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
fsovfvfvd | ⊢ (𝜑 → (𝐻‘𝑌) = {𝑥 ∈ 𝐴 ∣ 𝑌 ∈ (𝐹‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsovfvfvd.h | . . 3 ⊢ 𝐻 = (𝐺‘𝐹) | |
2 | fsovd.fs | . . . 4 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) | |
3 | fsovd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | fsovd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
5 | fsovfvd.g | . . . 4 ⊢ 𝐺 = (𝐴𝑂𝐵) | |
6 | fsovfvd.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝒫 𝐵 ↑m 𝐴)) | |
7 | 2, 3, 4, 5, 6 | fsovfvd 43505 | . . 3 ⊢ (𝜑 → (𝐺‘𝐹) = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝐹‘𝑥)})) |
8 | 1, 7 | eqtrid 2777 | . 2 ⊢ (𝜑 → 𝐻 = (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝐹‘𝑥)})) |
9 | eleq1 2813 | . . . 4 ⊢ (𝑦 = 𝑌 → (𝑦 ∈ (𝐹‘𝑥) ↔ 𝑌 ∈ (𝐹‘𝑥))) | |
10 | 9 | rabbidv 3427 | . . 3 ⊢ (𝑦 = 𝑌 → {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝐹‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝑌 ∈ (𝐹‘𝑥)}) |
11 | 10 | adantl 480 | . 2 ⊢ ((𝜑 ∧ 𝑦 = 𝑌) → {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝐹‘𝑥)} = {𝑥 ∈ 𝐴 ∣ 𝑌 ∈ (𝐹‘𝑥)}) |
12 | fsovfvfvd.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
13 | rabexg 5328 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝑌 ∈ (𝐹‘𝑥)} ∈ V) | |
14 | 3, 13 | syl 17 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑌 ∈ (𝐹‘𝑥)} ∈ V) |
15 | 8, 11, 12, 14 | fvmptd 7007 | 1 ⊢ (𝜑 → (𝐻‘𝑌) = {𝑥 ∈ 𝐴 ∣ 𝑌 ∈ (𝐹‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {crab 3419 Vcvv 3463 𝒫 cpw 4598 ↦ cmpt 5226 ‘cfv 6543 (class class class)co 7416 ∈ cmpo 7418 ↑m cmap 8843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7419 df-oprab 7420 df-mpo 7421 |
This theorem is referenced by: ntrneiel 43576 |
Copyright terms: Public domain | W3C validator |