Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovfd Structured version   Visualization version   GIF version

Theorem fsovfd 43228
Description: The operator, (𝐴𝑂𝐡), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐡, gives a function between two sets of functions. (Contributed by RP, 27-Apr-2021.)
Hypotheses
Ref Expression
fsovd.fs 𝑂 = (π‘Ž ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m π‘Ž) ↦ (𝑦 ∈ 𝑏 ↦ {π‘₯ ∈ π‘Ž ∣ 𝑦 ∈ (π‘“β€˜π‘₯)})))
fsovd.a (πœ‘ β†’ 𝐴 ∈ 𝑉)
fsovd.b (πœ‘ β†’ 𝐡 ∈ π‘Š)
fsovfvd.g 𝐺 = (𝐴𝑂𝐡)
Assertion
Ref Expression
fsovfd (πœ‘ β†’ 𝐺:(𝒫 𝐡 ↑m 𝐴)⟢(𝒫 𝐴 ↑m 𝐡))
Distinct variable groups:   𝐴,π‘Ž,𝑏,𝑓   π‘₯,𝐴,π‘Ž,𝑏   𝑦,𝐴,π‘Ž,𝑏   𝐡,π‘Ž,𝑏,𝑓   𝑦,𝐡   πœ‘,π‘Ž,𝑏,𝑓   πœ‘,𝑦
Allowed substitution hints:   πœ‘(π‘₯)   𝐡(π‘₯)   𝐺(π‘₯,𝑦,𝑓,π‘Ž,𝑏)   𝑂(π‘₯,𝑦,𝑓,π‘Ž,𝑏)   𝑉(π‘₯,𝑦,𝑓,π‘Ž,𝑏)   π‘Š(π‘₯,𝑦,𝑓,π‘Ž,𝑏)

Proof of Theorem fsovfd
StepHypRef Expression
1 fsovfvd.g . . 3 𝐺 = (𝐴𝑂𝐡)
2 fsovd.fs . . . 4 𝑂 = (π‘Ž ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m π‘Ž) ↦ (𝑦 ∈ 𝑏 ↦ {π‘₯ ∈ π‘Ž ∣ 𝑦 ∈ (π‘“β€˜π‘₯)})))
3 fsovd.a . . . 4 (πœ‘ β†’ 𝐴 ∈ 𝑉)
4 fsovd.b . . . 4 (πœ‘ β†’ 𝐡 ∈ π‘Š)
52, 3, 4fsovd 43224 . . 3 (πœ‘ β†’ (𝐴𝑂𝐡) = (𝑓 ∈ (𝒫 𝐡 ↑m 𝐴) ↦ (𝑦 ∈ 𝐡 ↦ {π‘₯ ∈ 𝐴 ∣ 𝑦 ∈ (π‘“β€˜π‘₯)})))
61, 5eqtrid 2783 . 2 (πœ‘ β†’ 𝐺 = (𝑓 ∈ (𝒫 𝐡 ↑m 𝐴) ↦ (𝑦 ∈ 𝐡 ↦ {π‘₯ ∈ 𝐴 ∣ 𝑦 ∈ (π‘“β€˜π‘₯)})))
7 ssrab2 4077 . . . . . . . 8 {π‘₯ ∈ 𝐴 ∣ 𝑦 ∈ (π‘“β€˜π‘₯)} βŠ† 𝐴
87a1i 11 . . . . . . 7 (πœ‘ β†’ {π‘₯ ∈ 𝐴 ∣ 𝑦 ∈ (π‘“β€˜π‘₯)} βŠ† 𝐴)
93, 8sselpwd 5326 . . . . . 6 (πœ‘ β†’ {π‘₯ ∈ 𝐴 ∣ 𝑦 ∈ (π‘“β€˜π‘₯)} ∈ 𝒫 𝐴)
109adantr 480 . . . . 5 ((πœ‘ ∧ 𝑦 ∈ 𝐡) β†’ {π‘₯ ∈ 𝐴 ∣ 𝑦 ∈ (π‘“β€˜π‘₯)} ∈ 𝒫 𝐴)
1110fmpttd 7116 . . . 4 (πœ‘ β†’ (𝑦 ∈ 𝐡 ↦ {π‘₯ ∈ 𝐴 ∣ 𝑦 ∈ (π‘“β€˜π‘₯)}):π΅βŸΆπ’« 𝐴)
123pwexd 5377 . . . . 5 (πœ‘ β†’ 𝒫 𝐴 ∈ V)
1312, 4elmapd 8840 . . . 4 (πœ‘ β†’ ((𝑦 ∈ 𝐡 ↦ {π‘₯ ∈ 𝐴 ∣ 𝑦 ∈ (π‘“β€˜π‘₯)}) ∈ (𝒫 𝐴 ↑m 𝐡) ↔ (𝑦 ∈ 𝐡 ↦ {π‘₯ ∈ 𝐴 ∣ 𝑦 ∈ (π‘“β€˜π‘₯)}):π΅βŸΆπ’« 𝐴))
1411, 13mpbird 257 . . 3 (πœ‘ β†’ (𝑦 ∈ 𝐡 ↦ {π‘₯ ∈ 𝐴 ∣ 𝑦 ∈ (π‘“β€˜π‘₯)}) ∈ (𝒫 𝐴 ↑m 𝐡))
1514adantr 480 . 2 ((πœ‘ ∧ 𝑓 ∈ (𝒫 𝐡 ↑m 𝐴)) β†’ (𝑦 ∈ 𝐡 ↦ {π‘₯ ∈ 𝐴 ∣ 𝑦 ∈ (π‘“β€˜π‘₯)}) ∈ (𝒫 𝐴 ↑m 𝐡))
166, 15fmpt3d 7117 1 (πœ‘ β†’ 𝐺:(𝒫 𝐡 ↑m 𝐴)⟢(𝒫 𝐴 ↑m 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   ∈ wcel 2105  {crab 3431  Vcvv 3473   βŠ† wss 3948  π’« cpw 4602   ↦ cmpt 5231  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412   ∈ cmpo 7414   ↑m cmap 8826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8828
This theorem is referenced by:  fsovcnvd  43230  fsovf1od  43232  clsneiel1  43324  neicvgmex  43333  neicvgel1  43335
  Copyright terms: Public domain W3C validator