| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsovfd | Structured version Visualization version GIF version | ||
| Description: The operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, gives a function between two sets of functions. (Contributed by RP, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| fsovd.fs | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| fsovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| fsovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| fsovfvd.g | ⊢ 𝐺 = (𝐴𝑂𝐵) |
| Ref | Expression |
|---|---|
| fsovfd | ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑m 𝐴)⟶(𝒫 𝐴 ↑m 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsovfvd.g | . . 3 ⊢ 𝐺 = (𝐴𝑂𝐵) | |
| 2 | fsovd.fs | . . . 4 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) | |
| 3 | fsovd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | fsovd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 5 | 2, 3, 4 | fsovd 44115 | . . 3 ⊢ (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| 6 | 1, 5 | eqtrid 2780 | . 2 ⊢ (𝜑 → 𝐺 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| 7 | ssrab2 4031 | . . . . . . . 8 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} ⊆ 𝐴 | |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} ⊆ 𝐴) |
| 9 | 3, 8 | sselpwd 5270 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} ∈ 𝒫 𝐴) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} ∈ 𝒫 𝐴) |
| 11 | 10 | fmpttd 7057 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}):𝐵⟶𝒫 𝐴) |
| 12 | 3 | pwexd 5321 | . . . . 5 ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
| 13 | 12, 4 | elmapd 8773 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) ∈ (𝒫 𝐴 ↑m 𝐵) ↔ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}):𝐵⟶𝒫 𝐴)) |
| 14 | 11, 13 | mpbird 257 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) ∈ (𝒫 𝐴 ↑m 𝐵)) |
| 15 | 14 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) ∈ (𝒫 𝐴 ↑m 𝐵)) |
| 16 | 6, 15 | fmpt3d 7058 | 1 ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑m 𝐴)⟶(𝒫 𝐴 ↑m 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {crab 3397 Vcvv 3438 ⊆ wss 3899 𝒫 cpw 4551 ↦ cmpt 5176 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 ↑m cmap 8759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-map 8761 |
| This theorem is referenced by: fsovcnvd 44121 fsovf1od 44123 clsneiel1 44215 neicvgmex 44224 neicvgel1 44226 |
| Copyright terms: Public domain | W3C validator |