| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsovfd | Structured version Visualization version GIF version | ||
| Description: The operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, gives a function between two sets of functions. (Contributed by RP, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| fsovd.fs | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| fsovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| fsovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| fsovfvd.g | ⊢ 𝐺 = (𝐴𝑂𝐵) |
| Ref | Expression |
|---|---|
| fsovfd | ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑m 𝐴)⟶(𝒫 𝐴 ↑m 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsovfvd.g | . . 3 ⊢ 𝐺 = (𝐴𝑂𝐵) | |
| 2 | fsovd.fs | . . . 4 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝑎) ↦ (𝑦 ∈ 𝑏 ↦ {𝑥 ∈ 𝑎 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) | |
| 3 | fsovd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | fsovd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 5 | 2, 3, 4 | fsovd 44004 | . . 3 ⊢ (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| 6 | 1, 5 | eqtrid 2777 | . 2 ⊢ (𝜑 → 𝐺 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}))) |
| 7 | ssrab2 4046 | . . . . . . . 8 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} ⊆ 𝐴 | |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} ⊆ 𝐴) |
| 9 | 3, 8 | sselpwd 5286 | . . . . . 6 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} ∈ 𝒫 𝐴) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)} ∈ 𝒫 𝐴) |
| 11 | 10 | fmpttd 7090 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}):𝐵⟶𝒫 𝐴) |
| 12 | 3 | pwexd 5337 | . . . . 5 ⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
| 13 | 12, 4 | elmapd 8816 | . . . 4 ⊢ (𝜑 → ((𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) ∈ (𝒫 𝐴 ↑m 𝐵) ↔ (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}):𝐵⟶𝒫 𝐴)) |
| 14 | 11, 13 | mpbird 257 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) ∈ (𝒫 𝐴 ↑m 𝐵)) |
| 15 | 14 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝒫 𝐵 ↑m 𝐴)) → (𝑦 ∈ 𝐵 ↦ {𝑥 ∈ 𝐴 ∣ 𝑦 ∈ (𝑓‘𝑥)}) ∈ (𝒫 𝐴 ↑m 𝐵)) |
| 16 | 6, 15 | fmpt3d 7091 | 1 ⊢ (𝜑 → 𝐺:(𝒫 𝐵 ↑m 𝐴)⟶(𝒫 𝐴 ↑m 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 ⊆ wss 3917 𝒫 cpw 4566 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ↑m cmap 8802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 |
| This theorem is referenced by: fsovcnvd 44010 fsovf1od 44012 clsneiel1 44104 neicvgmex 44113 neicvgel1 44115 |
| Copyright terms: Public domain | W3C validator |