Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovfd Structured version   Visualization version   GIF version

Theorem fsovfd 41588
Description: The operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, gives a function between two sets of functions. (Contributed by RP, 27-Apr-2021.)
Hypotheses
Ref Expression
fsovd.fs 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
fsovd.a (𝜑𝐴𝑉)
fsovd.b (𝜑𝐵𝑊)
fsovfvd.g 𝐺 = (𝐴𝑂𝐵)
Assertion
Ref Expression
fsovfd (𝜑𝐺:(𝒫 𝐵m 𝐴)⟶(𝒫 𝐴m 𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓   𝑥,𝐴,𝑎,𝑏   𝑦,𝐴,𝑎,𝑏   𝐵,𝑎,𝑏,𝑓   𝑦,𝐵   𝜑,𝑎,𝑏,𝑓   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐺(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑓,𝑎,𝑏)

Proof of Theorem fsovfd
StepHypRef Expression
1 fsovfvd.g . . 3 𝐺 = (𝐴𝑂𝐵)
2 fsovd.fs . . . 4 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
3 fsovd.a . . . 4 (𝜑𝐴𝑉)
4 fsovd.b . . . 4 (𝜑𝐵𝑊)
52, 3, 4fsovd 41584 . . 3 (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
61, 5eqtrid 2792 . 2 (𝜑𝐺 = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
7 ssrab2 4018 . . . . . . . 8 {𝑥𝐴𝑦 ∈ (𝑓𝑥)} ⊆ 𝐴
87a1i 11 . . . . . . 7 (𝜑 → {𝑥𝐴𝑦 ∈ (𝑓𝑥)} ⊆ 𝐴)
93, 8sselpwd 5254 . . . . . 6 (𝜑 → {𝑥𝐴𝑦 ∈ (𝑓𝑥)} ∈ 𝒫 𝐴)
109adantr 481 . . . . 5 ((𝜑𝑦𝐵) → {𝑥𝐴𝑦 ∈ (𝑓𝑥)} ∈ 𝒫 𝐴)
1110fmpttd 6984 . . . 4 (𝜑 → (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}):𝐵⟶𝒫 𝐴)
123pwexd 5306 . . . . 5 (𝜑 → 𝒫 𝐴 ∈ V)
1312, 4elmapd 8610 . . . 4 (𝜑 → ((𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}) ∈ (𝒫 𝐴m 𝐵) ↔ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}):𝐵⟶𝒫 𝐴))
1411, 13mpbird 256 . . 3 (𝜑 → (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}) ∈ (𝒫 𝐴m 𝐵))
1514adantr 481 . 2 ((𝜑𝑓 ∈ (𝒫 𝐵m 𝐴)) → (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}) ∈ (𝒫 𝐴m 𝐵))
166, 15fmpt3d 6985 1 (𝜑𝐺:(𝒫 𝐵m 𝐴)⟶(𝒫 𝐴m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  {crab 3070  Vcvv 3431  wss 3892  𝒫 cpw 4539  cmpt 5162  wf 6427  cfv 6431  (class class class)co 7269  cmpo 7271  m cmap 8596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-ov 7272  df-oprab 7273  df-mpo 7274  df-map 8598
This theorem is referenced by:  fsovcnvd  41590  fsovf1od  41592  clsneiel1  41686  neicvgmex  41695  neicvgel1  41697
  Copyright terms: Public domain W3C validator