![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsovfd | Structured version Visualization version GIF version |
Description: The operator, (π΄ππ΅), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, π΄ and π΅, gives a function between two sets of functions. (Contributed by RP, 27-Apr-2021.) |
Ref | Expression |
---|---|
fsovd.fs | β’ π = (π β V, π β V β¦ (π β (π« π βm π) β¦ (π¦ β π β¦ {π₯ β π β£ π¦ β (πβπ₯)}))) |
fsovd.a | β’ (π β π΄ β π) |
fsovd.b | β’ (π β π΅ β π) |
fsovfvd.g | β’ πΊ = (π΄ππ΅) |
Ref | Expression |
---|---|
fsovfd | β’ (π β πΊ:(π« π΅ βm π΄)βΆ(π« π΄ βm π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsovfvd.g | . . 3 β’ πΊ = (π΄ππ΅) | |
2 | fsovd.fs | . . . 4 β’ π = (π β V, π β V β¦ (π β (π« π βm π) β¦ (π¦ β π β¦ {π₯ β π β£ π¦ β (πβπ₯)}))) | |
3 | fsovd.a | . . . 4 β’ (π β π΄ β π) | |
4 | fsovd.b | . . . 4 β’ (π β π΅ β π) | |
5 | 2, 3, 4 | fsovd 43224 | . . 3 β’ (π β (π΄ππ΅) = (π β (π« π΅ βm π΄) β¦ (π¦ β π΅ β¦ {π₯ β π΄ β£ π¦ β (πβπ₯)}))) |
6 | 1, 5 | eqtrid 2783 | . 2 β’ (π β πΊ = (π β (π« π΅ βm π΄) β¦ (π¦ β π΅ β¦ {π₯ β π΄ β£ π¦ β (πβπ₯)}))) |
7 | ssrab2 4077 | . . . . . . . 8 β’ {π₯ β π΄ β£ π¦ β (πβπ₯)} β π΄ | |
8 | 7 | a1i 11 | . . . . . . 7 β’ (π β {π₯ β π΄ β£ π¦ β (πβπ₯)} β π΄) |
9 | 3, 8 | sselpwd 5326 | . . . . . 6 β’ (π β {π₯ β π΄ β£ π¦ β (πβπ₯)} β π« π΄) |
10 | 9 | adantr 480 | . . . . 5 β’ ((π β§ π¦ β π΅) β {π₯ β π΄ β£ π¦ β (πβπ₯)} β π« π΄) |
11 | 10 | fmpttd 7116 | . . . 4 β’ (π β (π¦ β π΅ β¦ {π₯ β π΄ β£ π¦ β (πβπ₯)}):π΅βΆπ« π΄) |
12 | 3 | pwexd 5377 | . . . . 5 β’ (π β π« π΄ β V) |
13 | 12, 4 | elmapd 8840 | . . . 4 β’ (π β ((π¦ β π΅ β¦ {π₯ β π΄ β£ π¦ β (πβπ₯)}) β (π« π΄ βm π΅) β (π¦ β π΅ β¦ {π₯ β π΄ β£ π¦ β (πβπ₯)}):π΅βΆπ« π΄)) |
14 | 11, 13 | mpbird 257 | . . 3 β’ (π β (π¦ β π΅ β¦ {π₯ β π΄ β£ π¦ β (πβπ₯)}) β (π« π΄ βm π΅)) |
15 | 14 | adantr 480 | . 2 β’ ((π β§ π β (π« π΅ βm π΄)) β (π¦ β π΅ β¦ {π₯ β π΄ β£ π¦ β (πβπ₯)}) β (π« π΄ βm π΅)) |
16 | 6, 15 | fmpt3d 7117 | 1 β’ (π β πΊ:(π« π΅ βm π΄)βΆ(π« π΄ βm π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 {crab 3431 Vcvv 3473 β wss 3948 π« cpw 4602 β¦ cmpt 5231 βΆwf 6539 βcfv 6543 (class class class)co 7412 β cmpo 7414 βm cmap 8826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8828 |
This theorem is referenced by: fsovcnvd 43230 fsovf1od 43232 clsneiel1 43324 neicvgmex 43333 neicvgel1 43335 |
Copyright terms: Public domain | W3C validator |