Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsovfd Structured version   Visualization version   GIF version

Theorem fsovfd 44001
Description: The operator, (𝐴𝑂𝐵), which maps between maps from one base set to subsets of the second to maps from the second base set to subsets of the first for base sets, 𝐴 and 𝐵, gives a function between two sets of functions. (Contributed by RP, 27-Apr-2021.)
Hypotheses
Ref Expression
fsovd.fs 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
fsovd.a (𝜑𝐴𝑉)
fsovd.b (𝜑𝐵𝑊)
fsovfvd.g 𝐺 = (𝐴𝑂𝐵)
Assertion
Ref Expression
fsovfd (𝜑𝐺:(𝒫 𝐵m 𝐴)⟶(𝒫 𝐴m 𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑓   𝑥,𝐴,𝑎,𝑏   𝑦,𝐴,𝑎,𝑏   𝐵,𝑎,𝑏,𝑓   𝑦,𝐵   𝜑,𝑎,𝑏,𝑓   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐺(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑓,𝑎,𝑏)   𝑊(𝑥,𝑦,𝑓,𝑎,𝑏)

Proof of Theorem fsovfd
StepHypRef Expression
1 fsovfvd.g . . 3 𝐺 = (𝐴𝑂𝐵)
2 fsovd.fs . . . 4 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝑎) ↦ (𝑦𝑏 ↦ {𝑥𝑎𝑦 ∈ (𝑓𝑥)})))
3 fsovd.a . . . 4 (𝜑𝐴𝑉)
4 fsovd.b . . . 4 (𝜑𝐵𝑊)
52, 3, 4fsovd 43997 . . 3 (𝜑 → (𝐴𝑂𝐵) = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
61, 5eqtrid 2776 . 2 (𝜑𝐺 = (𝑓 ∈ (𝒫 𝐵m 𝐴) ↦ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)})))
7 ssrab2 4043 . . . . . . . 8 {𝑥𝐴𝑦 ∈ (𝑓𝑥)} ⊆ 𝐴
87a1i 11 . . . . . . 7 (𝜑 → {𝑥𝐴𝑦 ∈ (𝑓𝑥)} ⊆ 𝐴)
93, 8sselpwd 5283 . . . . . 6 (𝜑 → {𝑥𝐴𝑦 ∈ (𝑓𝑥)} ∈ 𝒫 𝐴)
109adantr 480 . . . . 5 ((𝜑𝑦𝐵) → {𝑥𝐴𝑦 ∈ (𝑓𝑥)} ∈ 𝒫 𝐴)
1110fmpttd 7087 . . . 4 (𝜑 → (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}):𝐵⟶𝒫 𝐴)
123pwexd 5334 . . . . 5 (𝜑 → 𝒫 𝐴 ∈ V)
1312, 4elmapd 8813 . . . 4 (𝜑 → ((𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}) ∈ (𝒫 𝐴m 𝐵) ↔ (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}):𝐵⟶𝒫 𝐴))
1411, 13mpbird 257 . . 3 (𝜑 → (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}) ∈ (𝒫 𝐴m 𝐵))
1514adantr 480 . 2 ((𝜑𝑓 ∈ (𝒫 𝐵m 𝐴)) → (𝑦𝐵 ↦ {𝑥𝐴𝑦 ∈ (𝑓𝑥)}) ∈ (𝒫 𝐴m 𝐵))
166, 15fmpt3d 7088 1 (𝜑𝐺:(𝒫 𝐵m 𝐴)⟶(𝒫 𝐴m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  wss 3914  𝒫 cpw 4563  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801
This theorem is referenced by:  fsovcnvd  44003  fsovf1od  44005  clsneiel1  44097  neicvgmex  44106  neicvgel1  44108
  Copyright terms: Public domain W3C validator