![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniimadom | Structured version Visualization version GIF version |
Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. (Contributed by NM, 25-Mar-2006.) |
Ref | Expression |
---|---|
uniimadom.1 | ⊢ 𝐴 ∈ V |
uniimadom.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
uniimadom | ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniimadom.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | 1 | funimaex 6666 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ 𝐴) ∈ V) |
3 | 2 | adantr 480 | . . 3 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → (𝐹 “ 𝐴) ∈ V) |
4 | fvelima 6987 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) | |
5 | 4 | ex 412 | . . . . . . 7 ⊢ (Fun 𝐹 → (𝑦 ∈ (𝐹 “ 𝐴) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
6 | breq1 5169 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ≼ 𝐵 ↔ 𝑦 ≼ 𝐵)) | |
7 | 6 | biimpd 229 | . . . . . . . . 9 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) |
8 | 7 | reximi 3090 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) |
9 | r19.36v 3190 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) |
11 | 5, 10 | syl6 35 | . . . . . 6 ⊢ (Fun 𝐹 → (𝑦 ∈ (𝐹 “ 𝐴) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵))) |
12 | 11 | com23 86 | . . . . 5 ⊢ (Fun 𝐹 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → (𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ≼ 𝐵))) |
13 | 12 | imp 406 | . . . 4 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → (𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ≼ 𝐵)) |
14 | 13 | ralrimiv 3151 | . . 3 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∀𝑦 ∈ (𝐹 “ 𝐴)𝑦 ≼ 𝐵) |
15 | unidom 10612 | . . 3 ⊢ (((𝐹 “ 𝐴) ∈ V ∧ ∀𝑦 ∈ (𝐹 “ 𝐴)𝑦 ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ ((𝐹 “ 𝐴) × 𝐵)) | |
16 | 3, 14, 15 | syl2anc 583 | . 2 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ ((𝐹 “ 𝐴) × 𝐵)) |
17 | imadomg 10603 | . . . . 5 ⊢ (𝐴 ∈ V → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴)) | |
18 | 1, 17 | ax-mp 5 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴) |
19 | uniimadom.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
20 | 19 | xpdom1 9137 | . . . 4 ⊢ ((𝐹 “ 𝐴) ≼ 𝐴 → ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) |
21 | 18, 20 | syl 17 | . . 3 ⊢ (Fun 𝐹 → ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) |
22 | 21 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) |
23 | domtr 9067 | . 2 ⊢ ((∪ (𝐹 “ 𝐴) ≼ ((𝐹 “ 𝐴) × 𝐵) ∧ ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) | |
24 | 16, 22, 23 | syl2anc 583 | 1 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ∪ cuni 4931 class class class wbr 5166 × cxp 5698 “ cima 5703 Fun wfun 6567 ‘cfv 6573 ≼ cdom 9001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-ac2 10532 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-card 10008 df-acn 10011 df-ac 10185 |
This theorem is referenced by: uniimadomf 10614 |
Copyright terms: Public domain | W3C validator |