MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniimadom Structured version   Visualization version   GIF version

Theorem uniimadom 10584
Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. (Contributed by NM, 25-Mar-2006.)
Hypotheses
Ref Expression
uniimadom.1 𝐴 ∈ V
uniimadom.2 𝐵 ∈ V
Assertion
Ref Expression
uniimadom ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem uniimadom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 uniimadom.1 . . . . 5 𝐴 ∈ V
21funimaex 6655 . . . 4 (Fun 𝐹 → (𝐹𝐴) ∈ V)
32adantr 480 . . 3 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ∈ V)
4 fvelima 6974 . . . . . . . 8 ((Fun 𝐹𝑦 ∈ (𝐹𝐴)) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦)
54ex 412 . . . . . . 7 (Fun 𝐹 → (𝑦 ∈ (𝐹𝐴) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦))
6 breq1 5146 . . . . . . . . . 10 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ≼ 𝐵𝑦𝐵))
76biimpd 229 . . . . . . . . 9 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ≼ 𝐵𝑦𝐵))
87reximi 3084 . . . . . . . 8 (∃𝑥𝐴 (𝐹𝑥) = 𝑦 → ∃𝑥𝐴 ((𝐹𝑥) ≼ 𝐵𝑦𝐵))
9 r19.36v 3184 . . . . . . . 8 (∃𝑥𝐴 ((𝐹𝑥) ≼ 𝐵𝑦𝐵) → (∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵𝑦𝐵))
108, 9syl 17 . . . . . . 7 (∃𝑥𝐴 (𝐹𝑥) = 𝑦 → (∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵𝑦𝐵))
115, 10syl6 35 . . . . . 6 (Fun 𝐹 → (𝑦 ∈ (𝐹𝐴) → (∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵𝑦𝐵)))
1211com23 86 . . . . 5 (Fun 𝐹 → (∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵 → (𝑦 ∈ (𝐹𝐴) → 𝑦𝐵)))
1312imp 406 . . . 4 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝑦 ∈ (𝐹𝐴) → 𝑦𝐵))
1413ralrimiv 3145 . . 3 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → ∀𝑦 ∈ (𝐹𝐴)𝑦𝐵)
15 unidom 10583 . . 3 (((𝐹𝐴) ∈ V ∧ ∀𝑦 ∈ (𝐹𝐴)𝑦𝐵) → (𝐹𝐴) ≼ ((𝐹𝐴) × 𝐵))
163, 14, 15syl2anc 584 . 2 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ≼ ((𝐹𝐴) × 𝐵))
17 imadomg 10574 . . . . 5 (𝐴 ∈ V → (Fun 𝐹 → (𝐹𝐴) ≼ 𝐴))
181, 17ax-mp 5 . . . 4 (Fun 𝐹 → (𝐹𝐴) ≼ 𝐴)
19 uniimadom.2 . . . . 5 𝐵 ∈ V
2019xpdom1 9111 . . . 4 ((𝐹𝐴) ≼ 𝐴 → ((𝐹𝐴) × 𝐵) ≼ (𝐴 × 𝐵))
2118, 20syl 17 . . 3 (Fun 𝐹 → ((𝐹𝐴) × 𝐵) ≼ (𝐴 × 𝐵))
2221adantr 480 . 2 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → ((𝐹𝐴) × 𝐵) ≼ (𝐴 × 𝐵))
23 domtr 9047 . 2 (( (𝐹𝐴) ≼ ((𝐹𝐴) × 𝐵) ∧ ((𝐹𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
2416, 22, 23syl2anc 584 1 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480   cuni 4907   class class class wbr 5143   × cxp 5683  cima 5688  Fun wfun 6555  cfv 6561  cdom 8983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-ac2 10503
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-card 9979  df-acn 9982  df-ac 10156
This theorem is referenced by:  uniimadomf  10585
  Copyright terms: Public domain W3C validator