![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniimadom | Structured version Visualization version GIF version |
Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. (Contributed by NM, 25-Mar-2006.) |
Ref | Expression |
---|---|
uniimadom.1 | ⊢ 𝐴 ∈ V |
uniimadom.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
uniimadom | ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniimadom.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | 1 | funimaex 6626 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ 𝐴) ∈ V) |
3 | 2 | adantr 480 | . . 3 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → (𝐹 “ 𝐴) ∈ V) |
4 | fvelima 6947 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) | |
5 | 4 | ex 412 | . . . . . . 7 ⊢ (Fun 𝐹 → (𝑦 ∈ (𝐹 “ 𝐴) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
6 | breq1 5141 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ≼ 𝐵 ↔ 𝑦 ≼ 𝐵)) | |
7 | 6 | biimpd 228 | . . . . . . . . 9 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) |
8 | 7 | reximi 3076 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) |
9 | r19.36v 3175 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) |
11 | 5, 10 | syl6 35 | . . . . . 6 ⊢ (Fun 𝐹 → (𝑦 ∈ (𝐹 “ 𝐴) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵))) |
12 | 11 | com23 86 | . . . . 5 ⊢ (Fun 𝐹 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → (𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ≼ 𝐵))) |
13 | 12 | imp 406 | . . . 4 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → (𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ≼ 𝐵)) |
14 | 13 | ralrimiv 3137 | . . 3 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∀𝑦 ∈ (𝐹 “ 𝐴)𝑦 ≼ 𝐵) |
15 | unidom 10533 | . . 3 ⊢ (((𝐹 “ 𝐴) ∈ V ∧ ∀𝑦 ∈ (𝐹 “ 𝐴)𝑦 ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ ((𝐹 “ 𝐴) × 𝐵)) | |
16 | 3, 14, 15 | syl2anc 583 | . 2 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ ((𝐹 “ 𝐴) × 𝐵)) |
17 | imadomg 10524 | . . . . 5 ⊢ (𝐴 ∈ V → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴)) | |
18 | 1, 17 | ax-mp 5 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴) |
19 | uniimadom.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
20 | 19 | xpdom1 9066 | . . . 4 ⊢ ((𝐹 “ 𝐴) ≼ 𝐴 → ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) |
21 | 18, 20 | syl 17 | . . 3 ⊢ (Fun 𝐹 → ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) |
22 | 21 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) |
23 | domtr 8998 | . 2 ⊢ ((∪ (𝐹 “ 𝐴) ≼ ((𝐹 “ 𝐴) × 𝐵) ∧ ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) | |
24 | 16, 22, 23 | syl2anc 583 | 1 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ∃wrex 3062 Vcvv 3466 ∪ cuni 4899 class class class wbr 5138 × cxp 5664 “ cima 5669 Fun wfun 6527 ‘cfv 6533 ≼ cdom 8932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-ac2 10453 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-card 9929 df-acn 9932 df-ac 10106 |
This theorem is referenced by: uniimadomf 10535 |
Copyright terms: Public domain | W3C validator |