MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniimadom Structured version   Visualization version   GIF version

Theorem uniimadom 10497
Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. (Contributed by NM, 25-Mar-2006.)
Hypotheses
Ref Expression
uniimadom.1 𝐴 ∈ V
uniimadom.2 𝐵 ∈ V
Assertion
Ref Expression
uniimadom ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem uniimadom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 uniimadom.1 . . . . 5 𝐴 ∈ V
21funimaex 6605 . . . 4 (Fun 𝐹 → (𝐹𝐴) ∈ V)
32adantr 480 . . 3 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ∈ V)
4 fvelima 6926 . . . . . . . 8 ((Fun 𝐹𝑦 ∈ (𝐹𝐴)) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦)
54ex 412 . . . . . . 7 (Fun 𝐹 → (𝑦 ∈ (𝐹𝐴) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦))
6 breq1 5110 . . . . . . . . . 10 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ≼ 𝐵𝑦𝐵))
76biimpd 229 . . . . . . . . 9 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ≼ 𝐵𝑦𝐵))
87reximi 3067 . . . . . . . 8 (∃𝑥𝐴 (𝐹𝑥) = 𝑦 → ∃𝑥𝐴 ((𝐹𝑥) ≼ 𝐵𝑦𝐵))
9 r19.36v 3162 . . . . . . . 8 (∃𝑥𝐴 ((𝐹𝑥) ≼ 𝐵𝑦𝐵) → (∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵𝑦𝐵))
108, 9syl 17 . . . . . . 7 (∃𝑥𝐴 (𝐹𝑥) = 𝑦 → (∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵𝑦𝐵))
115, 10syl6 35 . . . . . 6 (Fun 𝐹 → (𝑦 ∈ (𝐹𝐴) → (∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵𝑦𝐵)))
1211com23 86 . . . . 5 (Fun 𝐹 → (∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵 → (𝑦 ∈ (𝐹𝐴) → 𝑦𝐵)))
1312imp 406 . . . 4 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝑦 ∈ (𝐹𝐴) → 𝑦𝐵))
1413ralrimiv 3124 . . 3 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → ∀𝑦 ∈ (𝐹𝐴)𝑦𝐵)
15 unidom 10496 . . 3 (((𝐹𝐴) ∈ V ∧ ∀𝑦 ∈ (𝐹𝐴)𝑦𝐵) → (𝐹𝐴) ≼ ((𝐹𝐴) × 𝐵))
163, 14, 15syl2anc 584 . 2 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ≼ ((𝐹𝐴) × 𝐵))
17 imadomg 10487 . . . . 5 (𝐴 ∈ V → (Fun 𝐹 → (𝐹𝐴) ≼ 𝐴))
181, 17ax-mp 5 . . . 4 (Fun 𝐹 → (𝐹𝐴) ≼ 𝐴)
19 uniimadom.2 . . . . 5 𝐵 ∈ V
2019xpdom1 9040 . . . 4 ((𝐹𝐴) ≼ 𝐴 → ((𝐹𝐴) × 𝐵) ≼ (𝐴 × 𝐵))
2118, 20syl 17 . . 3 (Fun 𝐹 → ((𝐹𝐴) × 𝐵) ≼ (𝐴 × 𝐵))
2221adantr 480 . 2 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → ((𝐹𝐴) × 𝐵) ≼ (𝐴 × 𝐵))
23 domtr 8978 . 2 (( (𝐹𝐴) ≼ ((𝐹𝐴) × 𝐵) ∧ ((𝐹𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
2416, 22, 23syl2anc 584 1 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447   cuni 4871   class class class wbr 5107   × cxp 5636  cima 5641  Fun wfun 6505  cfv 6511  cdom 8916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-card 9892  df-acn 9895  df-ac 10069
This theorem is referenced by:  uniimadomf  10498
  Copyright terms: Public domain W3C validator