MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniimadom Structured version   Visualization version   GIF version

Theorem uniimadom 10504
Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. (Contributed by NM, 25-Mar-2006.)
Hypotheses
Ref Expression
uniimadom.1 𝐴 ∈ V
uniimadom.2 𝐵 ∈ V
Assertion
Ref Expression
uniimadom ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem uniimadom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 uniimadom.1 . . . . 5 𝐴 ∈ V
21funimaex 6608 . . . 4 (Fun 𝐹 → (𝐹𝐴) ∈ V)
32adantr 480 . . 3 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ∈ V)
4 fvelima 6929 . . . . . . . 8 ((Fun 𝐹𝑦 ∈ (𝐹𝐴)) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦)
54ex 412 . . . . . . 7 (Fun 𝐹 → (𝑦 ∈ (𝐹𝐴) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦))
6 breq1 5113 . . . . . . . . . 10 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ≼ 𝐵𝑦𝐵))
76biimpd 229 . . . . . . . . 9 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ≼ 𝐵𝑦𝐵))
87reximi 3068 . . . . . . . 8 (∃𝑥𝐴 (𝐹𝑥) = 𝑦 → ∃𝑥𝐴 ((𝐹𝑥) ≼ 𝐵𝑦𝐵))
9 r19.36v 3163 . . . . . . . 8 (∃𝑥𝐴 ((𝐹𝑥) ≼ 𝐵𝑦𝐵) → (∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵𝑦𝐵))
108, 9syl 17 . . . . . . 7 (∃𝑥𝐴 (𝐹𝑥) = 𝑦 → (∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵𝑦𝐵))
115, 10syl6 35 . . . . . 6 (Fun 𝐹 → (𝑦 ∈ (𝐹𝐴) → (∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵𝑦𝐵)))
1211com23 86 . . . . 5 (Fun 𝐹 → (∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵 → (𝑦 ∈ (𝐹𝐴) → 𝑦𝐵)))
1312imp 406 . . . 4 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝑦 ∈ (𝐹𝐴) → 𝑦𝐵))
1413ralrimiv 3125 . . 3 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → ∀𝑦 ∈ (𝐹𝐴)𝑦𝐵)
15 unidom 10503 . . 3 (((𝐹𝐴) ∈ V ∧ ∀𝑦 ∈ (𝐹𝐴)𝑦𝐵) → (𝐹𝐴) ≼ ((𝐹𝐴) × 𝐵))
163, 14, 15syl2anc 584 . 2 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ≼ ((𝐹𝐴) × 𝐵))
17 imadomg 10494 . . . . 5 (𝐴 ∈ V → (Fun 𝐹 → (𝐹𝐴) ≼ 𝐴))
181, 17ax-mp 5 . . . 4 (Fun 𝐹 → (𝐹𝐴) ≼ 𝐴)
19 uniimadom.2 . . . . 5 𝐵 ∈ V
2019xpdom1 9045 . . . 4 ((𝐹𝐴) ≼ 𝐴 → ((𝐹𝐴) × 𝐵) ≼ (𝐴 × 𝐵))
2118, 20syl 17 . . 3 (Fun 𝐹 → ((𝐹𝐴) × 𝐵) ≼ (𝐴 × 𝐵))
2221adantr 480 . 2 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → ((𝐹𝐴) × 𝐵) ≼ (𝐴 × 𝐵))
23 domtr 8981 . 2 (( (𝐹𝐴) ≼ ((𝐹𝐴) × 𝐵) ∧ ((𝐹𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
2416, 22, 23syl2anc 584 1 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝐹𝑥) ≼ 𝐵) → (𝐹𝐴) ≼ (𝐴 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450   cuni 4874   class class class wbr 5110   × cxp 5639  cima 5644  Fun wfun 6508  cfv 6514  cdom 8919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-card 9899  df-acn 9902  df-ac 10076
This theorem is referenced by:  uniimadomf  10505
  Copyright terms: Public domain W3C validator