![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniimadom | Structured version Visualization version GIF version |
Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. (Contributed by NM, 25-Mar-2006.) |
Ref | Expression |
---|---|
uniimadom.1 | ⊢ 𝐴 ∈ V |
uniimadom.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
uniimadom | ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniimadom.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | 1 | funimaex 6633 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ 𝐴) ∈ V) |
3 | 2 | adantr 481 | . . 3 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → (𝐹 “ 𝐴) ∈ V) |
4 | fvelima 6954 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝑦 ∈ (𝐹 “ 𝐴)) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) | |
5 | 4 | ex 413 | . . . . . . 7 ⊢ (Fun 𝐹 → (𝑦 ∈ (𝐹 “ 𝐴) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦)) |
6 | breq1 5150 | . . . . . . . . . 10 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ≼ 𝐵 ↔ 𝑦 ≼ 𝐵)) | |
7 | 6 | biimpd 228 | . . . . . . . . 9 ⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) |
8 | 7 | reximi 3084 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) |
9 | r19.36v 3183 | . . . . . . . 8 ⊢ (∃𝑥 ∈ 𝐴 ((𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵)) |
11 | 5, 10 | syl6 35 | . . . . . 6 ⊢ (Fun 𝐹 → (𝑦 ∈ (𝐹 “ 𝐴) → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → 𝑦 ≼ 𝐵))) |
12 | 11 | com23 86 | . . . . 5 ⊢ (Fun 𝐹 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵 → (𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ≼ 𝐵))) |
13 | 12 | imp 407 | . . . 4 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → (𝑦 ∈ (𝐹 “ 𝐴) → 𝑦 ≼ 𝐵)) |
14 | 13 | ralrimiv 3145 | . . 3 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∀𝑦 ∈ (𝐹 “ 𝐴)𝑦 ≼ 𝐵) |
15 | unidom 10534 | . . 3 ⊢ (((𝐹 “ 𝐴) ∈ V ∧ ∀𝑦 ∈ (𝐹 “ 𝐴)𝑦 ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ ((𝐹 “ 𝐴) × 𝐵)) | |
16 | 3, 14, 15 | syl2anc 584 | . 2 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ ((𝐹 “ 𝐴) × 𝐵)) |
17 | imadomg 10525 | . . . . 5 ⊢ (𝐴 ∈ V → (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴)) | |
18 | 1, 17 | ax-mp 5 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ 𝐴) ≼ 𝐴) |
19 | uniimadom.2 | . . . . 5 ⊢ 𝐵 ∈ V | |
20 | 19 | xpdom1 9067 | . . . 4 ⊢ ((𝐹 “ 𝐴) ≼ 𝐴 → ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) |
21 | 18, 20 | syl 17 | . . 3 ⊢ (Fun 𝐹 → ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) |
22 | 21 | adantr 481 | . 2 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) |
23 | domtr 8999 | . 2 ⊢ ((∪ (𝐹 “ 𝐴) ≼ ((𝐹 “ 𝐴) × 𝐵) ∧ ((𝐹 “ 𝐴) × 𝐵) ≼ (𝐴 × 𝐵)) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) | |
24 | 16, 22, 23 | syl2anc 584 | 1 ⊢ ((Fun 𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ≼ 𝐵) → ∪ (𝐹 “ 𝐴) ≼ (𝐴 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 Vcvv 3474 ∪ cuni 4907 class class class wbr 5147 × cxp 5673 “ cima 5678 Fun wfun 6534 ‘cfv 6540 ≼ cdom 8933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-ac2 10454 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-card 9930 df-acn 9933 df-ac 10107 |
This theorem is referenced by: uniimadomf 10536 |
Copyright terms: Public domain | W3C validator |