MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oldf Structured version   Visualization version   GIF version

Theorem oldf 27910
Description: The older function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
oldf O :On⟶𝒫 No

Proof of Theorem oldf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-old 27901 . 2 O = (𝑥 ∈ On ↦ ( M “ 𝑥))
2 imassrn 6090 . . . . . . . 8 ( M “ 𝑥) ⊆ ran M
3 madef 27909 . . . . . . . . 9 M :On⟶𝒫 No
4 frn 6743 . . . . . . . . 9 ( M :On⟶𝒫 No → ran M ⊆ 𝒫 No )
53, 4ax-mp 5 . . . . . . . 8 ran M ⊆ 𝒫 No
62, 5sstri 4004 . . . . . . 7 ( M “ 𝑥) ⊆ 𝒫 No
76sseli 3990 . . . . . 6 (𝑦 ∈ ( M “ 𝑥) → 𝑦 ∈ 𝒫 No )
87elpwid 4613 . . . . 5 (𝑦 ∈ ( M “ 𝑥) → 𝑦 No )
98rgen 3060 . . . 4 𝑦 ∈ ( M “ 𝑥)𝑦 No
109a1i 11 . . 3 (𝑥 ∈ On → ∀𝑦 ∈ ( M “ 𝑥)𝑦 No )
11 ffun 6739 . . . . . . . 8 ( M :On⟶𝒫 No → Fun M )
123, 11ax-mp 5 . . . . . . 7 Fun M
13 vex 3481 . . . . . . . 8 𝑥 ∈ V
1413funimaex 6655 . . . . . . 7 (Fun M → ( M “ 𝑥) ∈ V)
1512, 14ax-mp 5 . . . . . 6 ( M “ 𝑥) ∈ V
1615uniex 7759 . . . . 5 ( M “ 𝑥) ∈ V
1716elpw 4608 . . . 4 ( ( M “ 𝑥) ∈ 𝒫 No ( M “ 𝑥) ⊆ No )
18 unissb 4943 . . . 4 ( ( M “ 𝑥) ⊆ No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 No )
1917, 18bitri 275 . . 3 ( ( M “ 𝑥) ∈ 𝒫 No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 No )
2010, 19sylibr 234 . 2 (𝑥 ∈ On → ( M “ 𝑥) ∈ 𝒫 No )
211, 20fmpti 7131 1 O :On⟶𝒫 No
Colors of variables: wff setvar class
Syntax hints:  wcel 2105  wral 3058  Vcvv 3477  wss 3962  𝒫 cpw 4604   cuni 4911  ran crn 5689  cima 5691  Oncon0 6385  Fun wfun 6556  wf 6558   No csur 27698   M cmade 27895   O cold 27896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-1o 8504  df-2o 8505  df-no 27701  df-slt 27702  df-bday 27703  df-sslt 27840  df-scut 27842  df-made 27900  df-old 27901
This theorem is referenced by:  oldssno  27914  leftf  27918  rightf  27919  oldssmade  27930  oldlim  27939  oldbdayim  27941
  Copyright terms: Public domain W3C validator