![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oldf | Structured version Visualization version GIF version |
Description: The older function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
Ref | Expression |
---|---|
oldf | ⊢ O :On⟶𝒫 No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-old 27749 | . 2 ⊢ O = (𝑥 ∈ On ↦ ∪ ( M “ 𝑥)) | |
2 | imassrn 6068 | . . . . . . . 8 ⊢ ( M “ 𝑥) ⊆ ran M | |
3 | madef 27757 | . . . . . . . . 9 ⊢ M :On⟶𝒫 No | |
4 | frn 6723 | . . . . . . . . 9 ⊢ ( M :On⟶𝒫 No → ran M ⊆ 𝒫 No ) | |
5 | 3, 4 | ax-mp 5 | . . . . . . . 8 ⊢ ran M ⊆ 𝒫 No |
6 | 2, 5 | sstri 3987 | . . . . . . 7 ⊢ ( M “ 𝑥) ⊆ 𝒫 No |
7 | 6 | sseli 3974 | . . . . . 6 ⊢ (𝑦 ∈ ( M “ 𝑥) → 𝑦 ∈ 𝒫 No ) |
8 | 7 | elpwid 4607 | . . . . 5 ⊢ (𝑦 ∈ ( M “ 𝑥) → 𝑦 ⊆ No ) |
9 | 8 | rgen 3058 | . . . 4 ⊢ ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No |
10 | 9 | a1i 11 | . . 3 ⊢ (𝑥 ∈ On → ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No ) |
11 | ffun 6719 | . . . . . . . 8 ⊢ ( M :On⟶𝒫 No → Fun M ) | |
12 | 3, 11 | ax-mp 5 | . . . . . . 7 ⊢ Fun M |
13 | vex 3473 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
14 | 13 | funimaex 6635 | . . . . . . 7 ⊢ (Fun M → ( M “ 𝑥) ∈ V) |
15 | 12, 14 | ax-mp 5 | . . . . . 6 ⊢ ( M “ 𝑥) ∈ V |
16 | 15 | uniex 7738 | . . . . 5 ⊢ ∪ ( M “ 𝑥) ∈ V |
17 | 16 | elpw 4602 | . . . 4 ⊢ (∪ ( M “ 𝑥) ∈ 𝒫 No ↔ ∪ ( M “ 𝑥) ⊆ No ) |
18 | unissb 4937 | . . . 4 ⊢ (∪ ( M “ 𝑥) ⊆ No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No ) | |
19 | 17, 18 | bitri 275 | . . 3 ⊢ (∪ ( M “ 𝑥) ∈ 𝒫 No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No ) |
20 | 10, 19 | sylibr 233 | . 2 ⊢ (𝑥 ∈ On → ∪ ( M “ 𝑥) ∈ 𝒫 No ) |
21 | 1, 20 | fmpti 7116 | 1 ⊢ O :On⟶𝒫 No |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 ∀wral 3056 Vcvv 3469 ⊆ wss 3944 𝒫 cpw 4598 ∪ cuni 4903 ran crn 5673 “ cima 5675 Oncon0 6363 Fun wfun 6536 ⟶wf 6538 No csur 27547 M cmade 27743 O cold 27744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-1o 8478 df-2o 8479 df-no 27550 df-slt 27551 df-bday 27552 df-sslt 27688 df-scut 27690 df-made 27748 df-old 27749 |
This theorem is referenced by: oldssno 27762 leftf 27766 rightf 27767 oldssmade 27778 oldlim 27787 oldbdayim 27789 |
Copyright terms: Public domain | W3C validator |