![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oldf | Structured version Visualization version GIF version |
Description: The older function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
Ref | Expression |
---|---|
oldf | β’ O :OnβΆπ« No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-old 27595 | . 2 β’ O = (π₯ β On β¦ βͺ ( M β π₯)) | |
2 | imassrn 6070 | . . . . . . . 8 β’ ( M β π₯) β ran M | |
3 | madef 27603 | . . . . . . . . 9 β’ M :OnβΆπ« No | |
4 | frn 6724 | . . . . . . . . 9 β’ ( M :OnβΆπ« No β ran M β π« No ) | |
5 | 3, 4 | ax-mp 5 | . . . . . . . 8 β’ ran M β π« No |
6 | 2, 5 | sstri 3991 | . . . . . . 7 β’ ( M β π₯) β π« No |
7 | 6 | sseli 3978 | . . . . . 6 β’ (π¦ β ( M β π₯) β π¦ β π« No ) |
8 | 7 | elpwid 4611 | . . . . 5 β’ (π¦ β ( M β π₯) β π¦ β No ) |
9 | 8 | rgen 3062 | . . . 4 β’ βπ¦ β ( M β π₯)π¦ β No |
10 | 9 | a1i 11 | . . 3 β’ (π₯ β On β βπ¦ β ( M β π₯)π¦ β No ) |
11 | ffun 6720 | . . . . . . . 8 β’ ( M :OnβΆπ« No β Fun M ) | |
12 | 3, 11 | ax-mp 5 | . . . . . . 7 β’ Fun M |
13 | vex 3477 | . . . . . . . 8 β’ π₯ β V | |
14 | 13 | funimaex 6636 | . . . . . . 7 β’ (Fun M β ( M β π₯) β V) |
15 | 12, 14 | ax-mp 5 | . . . . . 6 β’ ( M β π₯) β V |
16 | 15 | uniex 7735 | . . . . 5 β’ βͺ ( M β π₯) β V |
17 | 16 | elpw 4606 | . . . 4 β’ (βͺ ( M β π₯) β π« No β βͺ ( M β π₯) β No ) |
18 | unissb 4943 | . . . 4 β’ (βͺ ( M β π₯) β No β βπ¦ β ( M β π₯)π¦ β No ) | |
19 | 17, 18 | bitri 275 | . . 3 β’ (βͺ ( M β π₯) β π« No β βπ¦ β ( M β π₯)π¦ β No ) |
20 | 10, 19 | sylibr 233 | . 2 β’ (π₯ β On β βͺ ( M β π₯) β π« No ) |
21 | 1, 20 | fmpti 7113 | 1 β’ O :OnβΆπ« No |
Colors of variables: wff setvar class |
Syntax hints: β wcel 2105 βwral 3060 Vcvv 3473 β wss 3948 π« cpw 4602 βͺ cuni 4908 ran crn 5677 β cima 5679 Oncon0 6364 Fun wfun 6537 βΆwf 6539 No csur 27394 M cmade 27589 O cold 27590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-1o 8472 df-2o 8473 df-no 27397 df-slt 27398 df-bday 27399 df-sslt 27534 df-scut 27536 df-made 27594 df-old 27595 |
This theorem is referenced by: oldssno 27608 leftf 27612 rightf 27613 oldssmade 27624 oldlim 27633 oldbdayim 27635 |
Copyright terms: Public domain | W3C validator |