![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oldf | Structured version Visualization version GIF version |
Description: The older function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
Ref | Expression |
---|---|
oldf | ⊢ O :On⟶𝒫 No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-old 27905 | . 2 ⊢ O = (𝑥 ∈ On ↦ ∪ ( M “ 𝑥)) | |
2 | imassrn 6100 | . . . . . . . 8 ⊢ ( M “ 𝑥) ⊆ ran M | |
3 | madef 27913 | . . . . . . . . 9 ⊢ M :On⟶𝒫 No | |
4 | frn 6754 | . . . . . . . . 9 ⊢ ( M :On⟶𝒫 No → ran M ⊆ 𝒫 No ) | |
5 | 3, 4 | ax-mp 5 | . . . . . . . 8 ⊢ ran M ⊆ 𝒫 No |
6 | 2, 5 | sstri 4018 | . . . . . . 7 ⊢ ( M “ 𝑥) ⊆ 𝒫 No |
7 | 6 | sseli 4004 | . . . . . 6 ⊢ (𝑦 ∈ ( M “ 𝑥) → 𝑦 ∈ 𝒫 No ) |
8 | 7 | elpwid 4631 | . . . . 5 ⊢ (𝑦 ∈ ( M “ 𝑥) → 𝑦 ⊆ No ) |
9 | 8 | rgen 3069 | . . . 4 ⊢ ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No |
10 | 9 | a1i 11 | . . 3 ⊢ (𝑥 ∈ On → ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No ) |
11 | ffun 6750 | . . . . . . . 8 ⊢ ( M :On⟶𝒫 No → Fun M ) | |
12 | 3, 11 | ax-mp 5 | . . . . . . 7 ⊢ Fun M |
13 | vex 3492 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
14 | 13 | funimaex 6666 | . . . . . . 7 ⊢ (Fun M → ( M “ 𝑥) ∈ V) |
15 | 12, 14 | ax-mp 5 | . . . . . 6 ⊢ ( M “ 𝑥) ∈ V |
16 | 15 | uniex 7776 | . . . . 5 ⊢ ∪ ( M “ 𝑥) ∈ V |
17 | 16 | elpw 4626 | . . . 4 ⊢ (∪ ( M “ 𝑥) ∈ 𝒫 No ↔ ∪ ( M “ 𝑥) ⊆ No ) |
18 | unissb 4963 | . . . 4 ⊢ (∪ ( M “ 𝑥) ⊆ No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No ) | |
19 | 17, 18 | bitri 275 | . . 3 ⊢ (∪ ( M “ 𝑥) ∈ 𝒫 No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No ) |
20 | 10, 19 | sylibr 234 | . 2 ⊢ (𝑥 ∈ On → ∪ ( M “ 𝑥) ∈ 𝒫 No ) |
21 | 1, 20 | fmpti 7146 | 1 ⊢ O :On⟶𝒫 No |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 ran crn 5701 “ cima 5703 Oncon0 6395 Fun wfun 6567 ⟶wf 6569 No csur 27702 M cmade 27899 O cold 27900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 df-bday 27707 df-sslt 27844 df-scut 27846 df-made 27904 df-old 27905 |
This theorem is referenced by: oldssno 27918 leftf 27922 rightf 27923 oldssmade 27934 oldlim 27943 oldbdayim 27945 |
Copyright terms: Public domain | W3C validator |