| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oldf | Structured version Visualization version GIF version | ||
| Description: The older function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
| Ref | Expression |
|---|---|
| oldf | ⊢ O :On⟶𝒫 No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-old 27776 | . 2 ⊢ O = (𝑥 ∈ On ↦ ∪ ( M “ 𝑥)) | |
| 2 | imassrn 6026 | . . . . . . . 8 ⊢ ( M “ 𝑥) ⊆ ran M | |
| 3 | madef 27784 | . . . . . . . . 9 ⊢ M :On⟶𝒫 No | |
| 4 | frn 6663 | . . . . . . . . 9 ⊢ ( M :On⟶𝒫 No → ran M ⊆ 𝒫 No ) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . . 8 ⊢ ran M ⊆ 𝒫 No |
| 6 | 2, 5 | sstri 3947 | . . . . . . 7 ⊢ ( M “ 𝑥) ⊆ 𝒫 No |
| 7 | 6 | sseli 3933 | . . . . . 6 ⊢ (𝑦 ∈ ( M “ 𝑥) → 𝑦 ∈ 𝒫 No ) |
| 8 | 7 | elpwid 4562 | . . . . 5 ⊢ (𝑦 ∈ ( M “ 𝑥) → 𝑦 ⊆ No ) |
| 9 | 8 | rgen 3046 | . . . 4 ⊢ ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝑥 ∈ On → ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No ) |
| 11 | ffun 6659 | . . . . . . . 8 ⊢ ( M :On⟶𝒫 No → Fun M ) | |
| 12 | 3, 11 | ax-mp 5 | . . . . . . 7 ⊢ Fun M |
| 13 | vex 3442 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 14 | 13 | funimaex 6574 | . . . . . . 7 ⊢ (Fun M → ( M “ 𝑥) ∈ V) |
| 15 | 12, 14 | ax-mp 5 | . . . . . 6 ⊢ ( M “ 𝑥) ∈ V |
| 16 | 15 | uniex 7681 | . . . . 5 ⊢ ∪ ( M “ 𝑥) ∈ V |
| 17 | 16 | elpw 4557 | . . . 4 ⊢ (∪ ( M “ 𝑥) ∈ 𝒫 No ↔ ∪ ( M “ 𝑥) ⊆ No ) |
| 18 | unissb 4893 | . . . 4 ⊢ (∪ ( M “ 𝑥) ⊆ No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No ) | |
| 19 | 17, 18 | bitri 275 | . . 3 ⊢ (∪ ( M “ 𝑥) ∈ 𝒫 No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No ) |
| 20 | 10, 19 | sylibr 234 | . 2 ⊢ (𝑥 ∈ On → ∪ ( M “ 𝑥) ∈ 𝒫 No ) |
| 21 | 1, 20 | fmpti 7050 | 1 ⊢ O :On⟶𝒫 No |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ⊆ wss 3905 𝒫 cpw 4553 ∪ cuni 4861 ran crn 5624 “ cima 5626 Oncon0 6311 Fun wfun 6480 ⟶wf 6482 No csur 27567 M cmade 27770 O cold 27771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-1o 8395 df-2o 8396 df-no 27570 df-slt 27571 df-bday 27572 df-sslt 27710 df-scut 27712 df-made 27775 df-old 27776 |
| This theorem is referenced by: oldssno 27789 leftf 27797 rightf 27798 oldssmade 27809 oldss 27810 oldlim 27819 oldbdayim 27821 |
| Copyright terms: Public domain | W3C validator |