| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oldf | Structured version Visualization version GIF version | ||
| Description: The older function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
| Ref | Expression |
|---|---|
| oldf | ⊢ O :On⟶𝒫 No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-old 27756 | . 2 ⊢ O = (𝑥 ∈ On ↦ ∪ ( M “ 𝑥)) | |
| 2 | imassrn 6042 | . . . . . . . 8 ⊢ ( M “ 𝑥) ⊆ ran M | |
| 3 | madef 27764 | . . . . . . . . 9 ⊢ M :On⟶𝒫 No | |
| 4 | frn 6695 | . . . . . . . . 9 ⊢ ( M :On⟶𝒫 No → ran M ⊆ 𝒫 No ) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . . 8 ⊢ ran M ⊆ 𝒫 No |
| 6 | 2, 5 | sstri 3956 | . . . . . . 7 ⊢ ( M “ 𝑥) ⊆ 𝒫 No |
| 7 | 6 | sseli 3942 | . . . . . 6 ⊢ (𝑦 ∈ ( M “ 𝑥) → 𝑦 ∈ 𝒫 No ) |
| 8 | 7 | elpwid 4572 | . . . . 5 ⊢ (𝑦 ∈ ( M “ 𝑥) → 𝑦 ⊆ No ) |
| 9 | 8 | rgen 3046 | . . . 4 ⊢ ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝑥 ∈ On → ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No ) |
| 11 | ffun 6691 | . . . . . . . 8 ⊢ ( M :On⟶𝒫 No → Fun M ) | |
| 12 | 3, 11 | ax-mp 5 | . . . . . . 7 ⊢ Fun M |
| 13 | vex 3451 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 14 | 13 | funimaex 6605 | . . . . . . 7 ⊢ (Fun M → ( M “ 𝑥) ∈ V) |
| 15 | 12, 14 | ax-mp 5 | . . . . . 6 ⊢ ( M “ 𝑥) ∈ V |
| 16 | 15 | uniex 7717 | . . . . 5 ⊢ ∪ ( M “ 𝑥) ∈ V |
| 17 | 16 | elpw 4567 | . . . 4 ⊢ (∪ ( M “ 𝑥) ∈ 𝒫 No ↔ ∪ ( M “ 𝑥) ⊆ No ) |
| 18 | unissb 4903 | . . . 4 ⊢ (∪ ( M “ 𝑥) ⊆ No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No ) | |
| 19 | 17, 18 | bitri 275 | . . 3 ⊢ (∪ ( M “ 𝑥) ∈ 𝒫 No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No ) |
| 20 | 10, 19 | sylibr 234 | . 2 ⊢ (𝑥 ∈ On → ∪ ( M “ 𝑥) ∈ 𝒫 No ) |
| 21 | 1, 20 | fmpti 7084 | 1 ⊢ O :On⟶𝒫 No |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 ran crn 5639 “ cima 5641 Oncon0 6332 Fun wfun 6505 ⟶wf 6507 No csur 27551 M cmade 27750 O cold 27751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-bday 27556 df-sslt 27693 df-scut 27695 df-made 27755 df-old 27756 |
| This theorem is referenced by: oldssno 27769 leftf 27777 rightf 27778 oldssmade 27789 oldlim 27798 oldbdayim 27800 |
| Copyright terms: Public domain | W3C validator |