| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oldf | Structured version Visualization version GIF version | ||
| Description: The older function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
| Ref | Expression |
|---|---|
| oldf | ⊢ O :On⟶𝒫 No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-old 27804 | . 2 ⊢ O = (𝑥 ∈ On ↦ ∪ ( M “ 𝑥)) | |
| 2 | imassrn 6058 | . . . . . . . 8 ⊢ ( M “ 𝑥) ⊆ ran M | |
| 3 | madef 27812 | . . . . . . . . 9 ⊢ M :On⟶𝒫 No | |
| 4 | frn 6712 | . . . . . . . . 9 ⊢ ( M :On⟶𝒫 No → ran M ⊆ 𝒫 No ) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . . . 8 ⊢ ran M ⊆ 𝒫 No |
| 6 | 2, 5 | sstri 3968 | . . . . . . 7 ⊢ ( M “ 𝑥) ⊆ 𝒫 No |
| 7 | 6 | sseli 3954 | . . . . . 6 ⊢ (𝑦 ∈ ( M “ 𝑥) → 𝑦 ∈ 𝒫 No ) |
| 8 | 7 | elpwid 4584 | . . . . 5 ⊢ (𝑦 ∈ ( M “ 𝑥) → 𝑦 ⊆ No ) |
| 9 | 8 | rgen 3053 | . . . 4 ⊢ ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝑥 ∈ On → ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No ) |
| 11 | ffun 6708 | . . . . . . . 8 ⊢ ( M :On⟶𝒫 No → Fun M ) | |
| 12 | 3, 11 | ax-mp 5 | . . . . . . 7 ⊢ Fun M |
| 13 | vex 3463 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 14 | 13 | funimaex 6624 | . . . . . . 7 ⊢ (Fun M → ( M “ 𝑥) ∈ V) |
| 15 | 12, 14 | ax-mp 5 | . . . . . 6 ⊢ ( M “ 𝑥) ∈ V |
| 16 | 15 | uniex 7733 | . . . . 5 ⊢ ∪ ( M “ 𝑥) ∈ V |
| 17 | 16 | elpw 4579 | . . . 4 ⊢ (∪ ( M “ 𝑥) ∈ 𝒫 No ↔ ∪ ( M “ 𝑥) ⊆ No ) |
| 18 | unissb 4915 | . . . 4 ⊢ (∪ ( M “ 𝑥) ⊆ No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No ) | |
| 19 | 17, 18 | bitri 275 | . . 3 ⊢ (∪ ( M “ 𝑥) ∈ 𝒫 No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No ) |
| 20 | 10, 19 | sylibr 234 | . 2 ⊢ (𝑥 ∈ On → ∪ ( M “ 𝑥) ∈ 𝒫 No ) |
| 21 | 1, 20 | fmpti 7101 | 1 ⊢ O :On⟶𝒫 No |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 ran crn 5655 “ cima 5657 Oncon0 6352 Fun wfun 6524 ⟶wf 6526 No csur 27601 M cmade 27798 O cold 27799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-1o 8478 df-2o 8479 df-no 27604 df-slt 27605 df-bday 27606 df-sslt 27743 df-scut 27745 df-made 27803 df-old 27804 |
| This theorem is referenced by: oldssno 27817 leftf 27821 rightf 27822 oldssmade 27833 oldlim 27842 oldbdayim 27844 |
| Copyright terms: Public domain | W3C validator |