MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oldf Structured version   Visualization version   GIF version

Theorem oldf 27896
Description: The older function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
oldf O :On⟶𝒫 No

Proof of Theorem oldf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-old 27887 . 2 O = (𝑥 ∈ On ↦ ( M “ 𝑥))
2 imassrn 6089 . . . . . . . 8 ( M “ 𝑥) ⊆ ran M
3 madef 27895 . . . . . . . . 9 M :On⟶𝒫 No
4 frn 6743 . . . . . . . . 9 ( M :On⟶𝒫 No → ran M ⊆ 𝒫 No )
53, 4ax-mp 5 . . . . . . . 8 ran M ⊆ 𝒫 No
62, 5sstri 3993 . . . . . . 7 ( M “ 𝑥) ⊆ 𝒫 No
76sseli 3979 . . . . . 6 (𝑦 ∈ ( M “ 𝑥) → 𝑦 ∈ 𝒫 No )
87elpwid 4609 . . . . 5 (𝑦 ∈ ( M “ 𝑥) → 𝑦 No )
98rgen 3063 . . . 4 𝑦 ∈ ( M “ 𝑥)𝑦 No
109a1i 11 . . 3 (𝑥 ∈ On → ∀𝑦 ∈ ( M “ 𝑥)𝑦 No )
11 ffun 6739 . . . . . . . 8 ( M :On⟶𝒫 No → Fun M )
123, 11ax-mp 5 . . . . . . 7 Fun M
13 vex 3484 . . . . . . . 8 𝑥 ∈ V
1413funimaex 6655 . . . . . . 7 (Fun M → ( M “ 𝑥) ∈ V)
1512, 14ax-mp 5 . . . . . 6 ( M “ 𝑥) ∈ V
1615uniex 7761 . . . . 5 ( M “ 𝑥) ∈ V
1716elpw 4604 . . . 4 ( ( M “ 𝑥) ∈ 𝒫 No ( M “ 𝑥) ⊆ No )
18 unissb 4939 . . . 4 ( ( M “ 𝑥) ⊆ No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 No )
1917, 18bitri 275 . . 3 ( ( M “ 𝑥) ∈ 𝒫 No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 No )
2010, 19sylibr 234 . 2 (𝑥 ∈ On → ( M “ 𝑥) ∈ 𝒫 No )
211, 20fmpti 7132 1 O :On⟶𝒫 No
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wral 3061  Vcvv 3480  wss 3951  𝒫 cpw 4600   cuni 4907  ran crn 5686  cima 5688  Oncon0 6384  Fun wfun 6555  wf 6557   No csur 27684   M cmade 27881   O cold 27882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-1o 8506  df-2o 8507  df-no 27687  df-slt 27688  df-bday 27689  df-sslt 27826  df-scut 27828  df-made 27886  df-old 27887
This theorem is referenced by:  oldssno  27900  leftf  27904  rightf  27905  oldssmade  27916  oldlim  27925  oldbdayim  27927
  Copyright terms: Public domain W3C validator