Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > oldf | Structured version Visualization version GIF version |
Description: The older function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
Ref | Expression |
---|---|
oldf | ⊢ O :On⟶𝒫 No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-old 33959 | . 2 ⊢ O = (𝑥 ∈ On ↦ ∪ ( M “ 𝑥)) | |
2 | imassrn 5969 | . . . . . . . 8 ⊢ ( M “ 𝑥) ⊆ ran M | |
3 | madef 33967 | . . . . . . . . 9 ⊢ M :On⟶𝒫 No | |
4 | frn 6591 | . . . . . . . . 9 ⊢ ( M :On⟶𝒫 No → ran M ⊆ 𝒫 No ) | |
5 | 3, 4 | ax-mp 5 | . . . . . . . 8 ⊢ ran M ⊆ 𝒫 No |
6 | 2, 5 | sstri 3926 | . . . . . . 7 ⊢ ( M “ 𝑥) ⊆ 𝒫 No |
7 | 6 | sseli 3913 | . . . . . 6 ⊢ (𝑦 ∈ ( M “ 𝑥) → 𝑦 ∈ 𝒫 No ) |
8 | 7 | elpwid 4541 | . . . . 5 ⊢ (𝑦 ∈ ( M “ 𝑥) → 𝑦 ⊆ No ) |
9 | 8 | rgen 3073 | . . . 4 ⊢ ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No |
10 | 9 | a1i 11 | . . 3 ⊢ (𝑥 ∈ On → ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No ) |
11 | ffun 6587 | . . . . . . . 8 ⊢ ( M :On⟶𝒫 No → Fun M ) | |
12 | 3, 11 | ax-mp 5 | . . . . . . 7 ⊢ Fun M |
13 | vex 3426 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
14 | 13 | funimaex 6505 | . . . . . . 7 ⊢ (Fun M → ( M “ 𝑥) ∈ V) |
15 | 12, 14 | ax-mp 5 | . . . . . 6 ⊢ ( M “ 𝑥) ∈ V |
16 | 15 | uniex 7572 | . . . . 5 ⊢ ∪ ( M “ 𝑥) ∈ V |
17 | 16 | elpw 4534 | . . . 4 ⊢ (∪ ( M “ 𝑥) ∈ 𝒫 No ↔ ∪ ( M “ 𝑥) ⊆ No ) |
18 | unissb 4870 | . . . 4 ⊢ (∪ ( M “ 𝑥) ⊆ No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No ) | |
19 | 17, 18 | bitri 274 | . . 3 ⊢ (∪ ( M “ 𝑥) ∈ 𝒫 No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 ⊆ No ) |
20 | 10, 19 | sylibr 233 | . 2 ⊢ (𝑥 ∈ On → ∪ ( M “ 𝑥) ∈ 𝒫 No ) |
21 | 1, 20 | fmpti 6968 | 1 ⊢ O :On⟶𝒫 No |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 ran crn 5581 “ cima 5583 Oncon0 6251 Fun wfun 6412 ⟶wf 6414 No csur 33770 M cmade 33953 O cold 33954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-1o 8267 df-2o 8268 df-no 33773 df-slt 33774 df-bday 33775 df-sslt 33903 df-scut 33905 df-made 33958 df-old 33959 |
This theorem is referenced by: oldssno 33972 leftf 33976 rightf 33977 oldssmade 33987 oldlim 33996 oldbdayim 33998 |
Copyright terms: Public domain | W3C validator |