MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oldf Structured version   Visualization version   GIF version

Theorem oldf 27808
Description: The older function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
oldf O :On⟶𝒫 No

Proof of Theorem oldf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-old 27799 . 2 O = (𝑥 ∈ On ↦ ( M “ 𝑥))
2 imassrn 6027 . . . . . . . 8 ( M “ 𝑥) ⊆ ran M
3 madef 27807 . . . . . . . . 9 M :On⟶𝒫 No
4 frn 6666 . . . . . . . . 9 ( M :On⟶𝒫 No → ran M ⊆ 𝒫 No )
53, 4ax-mp 5 . . . . . . . 8 ran M ⊆ 𝒫 No
62, 5sstri 3941 . . . . . . 7 ( M “ 𝑥) ⊆ 𝒫 No
76sseli 3927 . . . . . 6 (𝑦 ∈ ( M “ 𝑥) → 𝑦 ∈ 𝒫 No )
87elpwid 4560 . . . . 5 (𝑦 ∈ ( M “ 𝑥) → 𝑦 No )
98rgen 3051 . . . 4 𝑦 ∈ ( M “ 𝑥)𝑦 No
109a1i 11 . . 3 (𝑥 ∈ On → ∀𝑦 ∈ ( M “ 𝑥)𝑦 No )
11 ffun 6662 . . . . . . . 8 ( M :On⟶𝒫 No → Fun M )
123, 11ax-mp 5 . . . . . . 7 Fun M
13 vex 3442 . . . . . . . 8 𝑥 ∈ V
1413funimaex 6577 . . . . . . 7 (Fun M → ( M “ 𝑥) ∈ V)
1512, 14ax-mp 5 . . . . . 6 ( M “ 𝑥) ∈ V
1615uniex 7683 . . . . 5 ( M “ 𝑥) ∈ V
1716elpw 4555 . . . 4 ( ( M “ 𝑥) ∈ 𝒫 No ( M “ 𝑥) ⊆ No )
18 unissb 4893 . . . 4 ( ( M “ 𝑥) ⊆ No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 No )
1917, 18bitri 275 . . 3 ( ( M “ 𝑥) ∈ 𝒫 No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 No )
2010, 19sylibr 234 . 2 (𝑥 ∈ On → ( M “ 𝑥) ∈ 𝒫 No )
211, 20fmpti 7054 1 O :On⟶𝒫 No
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  wral 3049  Vcvv 3438  wss 3899  𝒫 cpw 4551   cuni 4860  ran crn 5622  cima 5624  Oncon0 6314  Fun wfun 6483  wf 6485   No csur 27588   M cmade 27793   O cold 27794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-1o 8394  df-2o 8395  df-no 27591  df-slt 27592  df-bday 27593  df-sslt 27731  df-scut 27733  df-made 27798  df-old 27799
This theorem is referenced by:  oldssno  27812  leftf  27820  rightf  27821  oldssmade  27832  oldss  27833  oldlim  27842  oldbdayim  27844
  Copyright terms: Public domain W3C validator