MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oldf Structured version   Visualization version   GIF version

Theorem oldf 27791
Description: The older function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
oldf O :On⟶𝒫 No

Proof of Theorem oldf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-old 27782 . 2 O = (𝑥 ∈ On ↦ ( M “ 𝑥))
2 imassrn 6017 . . . . . . . 8 ( M “ 𝑥) ⊆ ran M
3 madef 27790 . . . . . . . . 9 M :On⟶𝒫 No
4 frn 6654 . . . . . . . . 9 ( M :On⟶𝒫 No → ran M ⊆ 𝒫 No )
53, 4ax-mp 5 . . . . . . . 8 ran M ⊆ 𝒫 No
62, 5sstri 3942 . . . . . . 7 ( M “ 𝑥) ⊆ 𝒫 No
76sseli 3928 . . . . . 6 (𝑦 ∈ ( M “ 𝑥) → 𝑦 ∈ 𝒫 No )
87elpwid 4557 . . . . 5 (𝑦 ∈ ( M “ 𝑥) → 𝑦 No )
98rgen 3047 . . . 4 𝑦 ∈ ( M “ 𝑥)𝑦 No
109a1i 11 . . 3 (𝑥 ∈ On → ∀𝑦 ∈ ( M “ 𝑥)𝑦 No )
11 ffun 6650 . . . . . . . 8 ( M :On⟶𝒫 No → Fun M )
123, 11ax-mp 5 . . . . . . 7 Fun M
13 vex 3438 . . . . . . . 8 𝑥 ∈ V
1413funimaex 6565 . . . . . . 7 (Fun M → ( M “ 𝑥) ∈ V)
1512, 14ax-mp 5 . . . . . 6 ( M “ 𝑥) ∈ V
1615uniex 7669 . . . . 5 ( M “ 𝑥) ∈ V
1716elpw 4552 . . . 4 ( ( M “ 𝑥) ∈ 𝒫 No ( M “ 𝑥) ⊆ No )
18 unissb 4889 . . . 4 ( ( M “ 𝑥) ⊆ No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 No )
1917, 18bitri 275 . . 3 ( ( M “ 𝑥) ∈ 𝒫 No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 No )
2010, 19sylibr 234 . 2 (𝑥 ∈ On → ( M “ 𝑥) ∈ 𝒫 No )
211, 20fmpti 7040 1 O :On⟶𝒫 No
Colors of variables: wff setvar class
Syntax hints:  wcel 2110  wral 3045  Vcvv 3434  wss 3900  𝒫 cpw 4548   cuni 4857  ran crn 5615  cima 5617  Oncon0 6302  Fun wfun 6471  wf 6473   No csur 27571   M cmade 27776   O cold 27777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-1o 8380  df-2o 8381  df-no 27574  df-slt 27575  df-bday 27576  df-sslt 27714  df-scut 27716  df-made 27781  df-old 27782
This theorem is referenced by:  oldssno  27795  leftf  27803  rightf  27804  oldssmade  27815  oldss  27816  oldlim  27825  oldbdayim  27827
  Copyright terms: Public domain W3C validator