MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oldf Structured version   Visualization version   GIF version

Theorem oldf 27785
Description: The older function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
oldf O :On⟶𝒫 No

Proof of Theorem oldf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-old 27776 . 2 O = (𝑥 ∈ On ↦ ( M “ 𝑥))
2 imassrn 6026 . . . . . . . 8 ( M “ 𝑥) ⊆ ran M
3 madef 27784 . . . . . . . . 9 M :On⟶𝒫 No
4 frn 6663 . . . . . . . . 9 ( M :On⟶𝒫 No → ran M ⊆ 𝒫 No )
53, 4ax-mp 5 . . . . . . . 8 ran M ⊆ 𝒫 No
62, 5sstri 3947 . . . . . . 7 ( M “ 𝑥) ⊆ 𝒫 No
76sseli 3933 . . . . . 6 (𝑦 ∈ ( M “ 𝑥) → 𝑦 ∈ 𝒫 No )
87elpwid 4562 . . . . 5 (𝑦 ∈ ( M “ 𝑥) → 𝑦 No )
98rgen 3046 . . . 4 𝑦 ∈ ( M “ 𝑥)𝑦 No
109a1i 11 . . 3 (𝑥 ∈ On → ∀𝑦 ∈ ( M “ 𝑥)𝑦 No )
11 ffun 6659 . . . . . . . 8 ( M :On⟶𝒫 No → Fun M )
123, 11ax-mp 5 . . . . . . 7 Fun M
13 vex 3442 . . . . . . . 8 𝑥 ∈ V
1413funimaex 6574 . . . . . . 7 (Fun M → ( M “ 𝑥) ∈ V)
1512, 14ax-mp 5 . . . . . 6 ( M “ 𝑥) ∈ V
1615uniex 7681 . . . . 5 ( M “ 𝑥) ∈ V
1716elpw 4557 . . . 4 ( ( M “ 𝑥) ∈ 𝒫 No ( M “ 𝑥) ⊆ No )
18 unissb 4893 . . . 4 ( ( M “ 𝑥) ⊆ No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 No )
1917, 18bitri 275 . . 3 ( ( M “ 𝑥) ∈ 𝒫 No ↔ ∀𝑦 ∈ ( M “ 𝑥)𝑦 No )
2010, 19sylibr 234 . 2 (𝑥 ∈ On → ( M “ 𝑥) ∈ 𝒫 No )
211, 20fmpti 7050 1 O :On⟶𝒫 No
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wral 3044  Vcvv 3438  wss 3905  𝒫 cpw 4553   cuni 4861  ran crn 5624  cima 5626  Oncon0 6311  Fun wfun 6480  wf 6482   No csur 27567   M cmade 27770   O cold 27771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-1o 8395  df-2o 8396  df-no 27570  df-slt 27571  df-bday 27572  df-sslt 27710  df-scut 27712  df-made 27775  df-old 27776
This theorem is referenced by:  oldssno  27789  leftf  27797  rightf  27798  oldssmade  27809  oldss  27810  oldlim  27819  oldbdayim  27821
  Copyright terms: Public domain W3C validator