Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setinds Structured version   Visualization version   GIF version

Theorem setinds 34392
Description: Principle of set induction (or E-induction). If a property passes from all elements of 𝑥 to 𝑥 itself, then it holds for all 𝑥. (Contributed by Scott Fenton, 10-Mar-2011.)
Hypothesis
Ref Expression
setinds.1 (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑)
Assertion
Ref Expression
setinds 𝜑
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem setinds
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vex 3452 . 2 𝑥 ∈ V
2 setind 9677 . . . . 5 (∀𝑧(𝑧 ⊆ {𝑥𝜑} → 𝑧 ∈ {𝑥𝜑}) → {𝑥𝜑} = V)
3 dfss3 3937 . . . . . . 7 (𝑧 ⊆ {𝑥𝜑} ↔ ∀𝑦𝑧 𝑦 ∈ {𝑥𝜑})
4 df-sbc 3745 . . . . . . . . 9 ([𝑦 / 𝑥]𝜑𝑦 ∈ {𝑥𝜑})
54ralbii 3097 . . . . . . . 8 (∀𝑦𝑧 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦𝑧 𝑦 ∈ {𝑥𝜑})
6 nfcv 2908 . . . . . . . . . . 11 𝑥𝑧
7 nfsbc1v 3764 . . . . . . . . . . 11 𝑥[𝑦 / 𝑥]𝜑
86, 7nfralw 3297 . . . . . . . . . 10 𝑥𝑦𝑧 [𝑦 / 𝑥]𝜑
9 nfsbc1v 3764 . . . . . . . . . 10 𝑥[𝑧 / 𝑥]𝜑
108, 9nfim 1900 . . . . . . . . 9 𝑥(∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
11 raleq 3312 . . . . . . . . . 10 (𝑥 = 𝑧 → (∀𝑦𝑥 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦𝑧 [𝑦 / 𝑥]𝜑))
12 sbceq1a 3755 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝜑[𝑧 / 𝑥]𝜑))
1311, 12imbi12d 345 . . . . . . . . 9 (𝑥 = 𝑧 → ((∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) ↔ (∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)))
14 setinds.1 . . . . . . . . 9 (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑)
1510, 13, 14chvarfv 2234 . . . . . . . 8 (∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
165, 15sylbir 234 . . . . . . 7 (∀𝑦𝑧 𝑦 ∈ {𝑥𝜑} → [𝑧 / 𝑥]𝜑)
173, 16sylbi 216 . . . . . 6 (𝑧 ⊆ {𝑥𝜑} → [𝑧 / 𝑥]𝜑)
18 df-sbc 3745 . . . . . 6 ([𝑧 / 𝑥]𝜑𝑧 ∈ {𝑥𝜑})
1917, 18sylib 217 . . . . 5 (𝑧 ⊆ {𝑥𝜑} → 𝑧 ∈ {𝑥𝜑})
202, 19mpg 1800 . . . 4 {𝑥𝜑} = V
2120eqcomi 2746 . . 3 V = {𝑥𝜑}
2221eqabi 2882 . 2 (𝑥 ∈ V ↔ 𝜑)
231, 22mpbi 229 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  {cab 2714  wral 3065  Vcvv 3448  [wsbc 3744  wss 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677  ax-reg 9535  ax-inf2 9584
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361
This theorem is referenced by:  setinds2f  34393
  Copyright terms: Public domain W3C validator