Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setinds Structured version   Visualization version   GIF version

Theorem setinds 32271
Description: Principle of E induction (set induction). If a property passes from all elements of 𝑥 to 𝑥 itself, then it holds for all 𝑥. (Contributed by Scott Fenton, 10-Mar-2011.)
Hypothesis
Ref Expression
setinds.1 (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑)
Assertion
Ref Expression
setinds 𝜑
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem setinds
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vex 3401 . 2 𝑥 ∈ V
2 setind 8907 . . . . 5 (∀𝑧(𝑧 ⊆ {𝑥𝜑} → 𝑧 ∈ {𝑥𝜑}) → {𝑥𝜑} = V)
3 dfss3 3810 . . . . . . 7 (𝑧 ⊆ {𝑥𝜑} ↔ ∀𝑦𝑧 𝑦 ∈ {𝑥𝜑})
4 df-sbc 3653 . . . . . . . . 9 ([𝑦 / 𝑥]𝜑𝑦 ∈ {𝑥𝜑})
54ralbii 3162 . . . . . . . 8 (∀𝑦𝑧 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦𝑧 𝑦 ∈ {𝑥𝜑})
6 nfcv 2934 . . . . . . . . . . 11 𝑥𝑧
7 nfsbc1v 3672 . . . . . . . . . . 11 𝑥[𝑦 / 𝑥]𝜑
86, 7nfral 3127 . . . . . . . . . 10 𝑥𝑦𝑧 [𝑦 / 𝑥]𝜑
9 nfsbc1v 3672 . . . . . . . . . 10 𝑥[𝑧 / 𝑥]𝜑
108, 9nfim 1943 . . . . . . . . 9 𝑥(∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
11 raleq 3330 . . . . . . . . . 10 (𝑥 = 𝑧 → (∀𝑦𝑥 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦𝑧 [𝑦 / 𝑥]𝜑))
12 sbceq1a 3663 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝜑[𝑧 / 𝑥]𝜑))
1311, 12imbi12d 336 . . . . . . . . 9 (𝑥 = 𝑧 → ((∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) ↔ (∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)))
14 setinds.1 . . . . . . . . 9 (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑)
1510, 13, 14chvar 2360 . . . . . . . 8 (∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
165, 15sylbir 227 . . . . . . 7 (∀𝑦𝑧 𝑦 ∈ {𝑥𝜑} → [𝑧 / 𝑥]𝜑)
173, 16sylbi 209 . . . . . 6 (𝑧 ⊆ {𝑥𝜑} → [𝑧 / 𝑥]𝜑)
18 df-sbc 3653 . . . . . 6 ([𝑧 / 𝑥]𝜑𝑧 ∈ {𝑥𝜑})
1917, 18sylib 210 . . . . 5 (𝑧 ⊆ {𝑥𝜑} → 𝑧 ∈ {𝑥𝜑})
202, 19mpg 1841 . . . 4 {𝑥𝜑} = V
2120eqcomi 2787 . . 3 V = {𝑥𝜑}
2221abeq2i 2895 . 2 (𝑥 ∈ V ↔ 𝜑)
231, 22mpbi 222 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  {cab 2763  wral 3090  Vcvv 3398  [wsbc 3652  wss 3792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-reg 8786  ax-inf2 8835
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-om 7344  df-wrecs 7689  df-recs 7751  df-rdg 7789
This theorem is referenced by:  setinds2f  32272
  Copyright terms: Public domain W3C validator