| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setinds | Structured version Visualization version GIF version | ||
| Description: Principle of set induction (or E-induction). If a property passes from all elements of 𝑥 to 𝑥 itself, then it holds for all 𝑥. (Contributed by Scott Fenton, 10-Mar-2011.) |
| Ref | Expression |
|---|---|
| setinds.1 | ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) |
| Ref | Expression |
|---|---|
| setinds | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3484 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | setind 9774 | . . . . 5 ⊢ (∀𝑧(𝑧 ⊆ {𝑥 ∣ 𝜑} → 𝑧 ∈ {𝑥 ∣ 𝜑}) → {𝑥 ∣ 𝜑} = V) | |
| 3 | dfss3 3972 | . . . . . . 7 ⊢ (𝑧 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑦 ∈ 𝑧 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | df-sbc 3789 | . . . . . . . . 9 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
| 5 | 4 | ralbii 3093 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝑧 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 6 | nfcv 2905 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥𝑧 | |
| 7 | nfsbc1v 3808 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
| 8 | 6, 7 | nfralw 3311 | . . . . . . . . . 10 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 |
| 9 | nfsbc1v 3808 | . . . . . . . . . 10 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
| 10 | 8, 9 | nfim 1896 | . . . . . . . . 9 ⊢ Ⅎ𝑥(∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) |
| 11 | raleq 3323 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑)) | |
| 12 | sbceq1a 3799 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 13 | 11, 12 | imbi12d 344 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → ((∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) ↔ (∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑))) |
| 14 | setinds.1 | . . . . . . . . 9 ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) | |
| 15 | 10, 13, 14 | chvarfv 2240 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) |
| 16 | 5, 15 | sylbir 235 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝑧 𝑦 ∈ {𝑥 ∣ 𝜑} → [𝑧 / 𝑥]𝜑) |
| 17 | 3, 16 | sylbi 217 | . . . . . 6 ⊢ (𝑧 ⊆ {𝑥 ∣ 𝜑} → [𝑧 / 𝑥]𝜑) |
| 18 | df-sbc 3789 | . . . . . 6 ⊢ ([𝑧 / 𝑥]𝜑 ↔ 𝑧 ∈ {𝑥 ∣ 𝜑}) | |
| 19 | 17, 18 | sylib 218 | . . . . 5 ⊢ (𝑧 ⊆ {𝑥 ∣ 𝜑} → 𝑧 ∈ {𝑥 ∣ 𝜑}) |
| 20 | 2, 19 | mpg 1797 | . . . 4 ⊢ {𝑥 ∣ 𝜑} = V |
| 21 | 20 | eqcomi 2746 | . . 3 ⊢ V = {𝑥 ∣ 𝜑} |
| 22 | 21 | eqabri 2885 | . 2 ⊢ (𝑥 ∈ V ↔ 𝜑) |
| 23 | 1, 22 | mpbi 230 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {cab 2714 ∀wral 3061 Vcvv 3480 [wsbc 3788 ⊆ wss 3951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 ax-reg 9632 ax-inf2 9681 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 |
| This theorem is referenced by: setinds2f 35780 |
| Copyright terms: Public domain | W3C validator |