| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > setinds | Structured version Visualization version GIF version | ||
| Description: Principle of set induction (or E-induction). If a property passes from all elements of 𝑥 to 𝑥 itself, then it holds for all 𝑥. (Contributed by Scott Fenton, 10-Mar-2011.) |
| Ref | Expression |
|---|---|
| setinds.1 | ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) |
| Ref | Expression |
|---|---|
| setinds | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3441 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | setind 9644 | . . . . 5 ⊢ (∀𝑧(𝑧 ⊆ {𝑥 ∣ 𝜑} → 𝑧 ∈ {𝑥 ∣ 𝜑}) → {𝑥 ∣ 𝜑} = V) | |
| 3 | dfss3 3919 | . . . . . . 7 ⊢ (𝑧 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑦 ∈ 𝑧 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
| 4 | df-sbc 3738 | . . . . . . . . 9 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
| 5 | 4 | ralbii 3079 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝑧 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 6 | nfcv 2895 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥𝑧 | |
| 7 | nfsbc1v 3757 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
| 8 | 6, 7 | nfralw 3280 | . . . . . . . . . 10 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 |
| 9 | nfsbc1v 3757 | . . . . . . . . . 10 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
| 10 | 8, 9 | nfim 1897 | . . . . . . . . 9 ⊢ Ⅎ𝑥(∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) |
| 11 | raleq 3290 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑)) | |
| 12 | sbceq1a 3748 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 13 | 11, 12 | imbi12d 344 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → ((∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) ↔ (∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑))) |
| 14 | setinds.1 | . . . . . . . . 9 ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) | |
| 15 | 10, 13, 14 | chvarfv 2245 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) |
| 16 | 5, 15 | sylbir 235 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝑧 𝑦 ∈ {𝑥 ∣ 𝜑} → [𝑧 / 𝑥]𝜑) |
| 17 | 3, 16 | sylbi 217 | . . . . . 6 ⊢ (𝑧 ⊆ {𝑥 ∣ 𝜑} → [𝑧 / 𝑥]𝜑) |
| 18 | df-sbc 3738 | . . . . . 6 ⊢ ([𝑧 / 𝑥]𝜑 ↔ 𝑧 ∈ {𝑥 ∣ 𝜑}) | |
| 19 | 17, 18 | sylib 218 | . . . . 5 ⊢ (𝑧 ⊆ {𝑥 ∣ 𝜑} → 𝑧 ∈ {𝑥 ∣ 𝜑}) |
| 20 | 2, 19 | mpg 1798 | . . . 4 ⊢ {𝑥 ∣ 𝜑} = V |
| 21 | 20 | eqcomi 2742 | . . 3 ⊢ V = {𝑥 ∣ 𝜑} |
| 22 | 21 | eqabri 2875 | . 2 ⊢ (𝑥 ∈ V ↔ 𝜑) |
| 23 | 1, 22 | mpbi 230 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {cab 2711 ∀wral 3048 Vcvv 3437 [wsbc 3737 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-reg 9485 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 |
| This theorem is referenced by: setinds2f 9647 |
| Copyright terms: Public domain | W3C validator |