Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setinds Structured version   Visualization version   GIF version

Theorem setinds 35779
Description: Principle of set induction (or E-induction). If a property passes from all elements of 𝑥 to 𝑥 itself, then it holds for all 𝑥. (Contributed by Scott Fenton, 10-Mar-2011.)
Hypothesis
Ref Expression
setinds.1 (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑)
Assertion
Ref Expression
setinds 𝜑
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem setinds
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vex 3484 . 2 𝑥 ∈ V
2 setind 9774 . . . . 5 (∀𝑧(𝑧 ⊆ {𝑥𝜑} → 𝑧 ∈ {𝑥𝜑}) → {𝑥𝜑} = V)
3 dfss3 3972 . . . . . . 7 (𝑧 ⊆ {𝑥𝜑} ↔ ∀𝑦𝑧 𝑦 ∈ {𝑥𝜑})
4 df-sbc 3789 . . . . . . . . 9 ([𝑦 / 𝑥]𝜑𝑦 ∈ {𝑥𝜑})
54ralbii 3093 . . . . . . . 8 (∀𝑦𝑧 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦𝑧 𝑦 ∈ {𝑥𝜑})
6 nfcv 2905 . . . . . . . . . . 11 𝑥𝑧
7 nfsbc1v 3808 . . . . . . . . . . 11 𝑥[𝑦 / 𝑥]𝜑
86, 7nfralw 3311 . . . . . . . . . 10 𝑥𝑦𝑧 [𝑦 / 𝑥]𝜑
9 nfsbc1v 3808 . . . . . . . . . 10 𝑥[𝑧 / 𝑥]𝜑
108, 9nfim 1896 . . . . . . . . 9 𝑥(∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
11 raleq 3323 . . . . . . . . . 10 (𝑥 = 𝑧 → (∀𝑦𝑥 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦𝑧 [𝑦 / 𝑥]𝜑))
12 sbceq1a 3799 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝜑[𝑧 / 𝑥]𝜑))
1311, 12imbi12d 344 . . . . . . . . 9 (𝑥 = 𝑧 → ((∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑) ↔ (∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)))
14 setinds.1 . . . . . . . . 9 (∀𝑦𝑥 [𝑦 / 𝑥]𝜑𝜑)
1510, 13, 14chvarfv 2240 . . . . . . . 8 (∀𝑦𝑧 [𝑦 / 𝑥]𝜑[𝑧 / 𝑥]𝜑)
165, 15sylbir 235 . . . . . . 7 (∀𝑦𝑧 𝑦 ∈ {𝑥𝜑} → [𝑧 / 𝑥]𝜑)
173, 16sylbi 217 . . . . . 6 (𝑧 ⊆ {𝑥𝜑} → [𝑧 / 𝑥]𝜑)
18 df-sbc 3789 . . . . . 6 ([𝑧 / 𝑥]𝜑𝑧 ∈ {𝑥𝜑})
1917, 18sylib 218 . . . . 5 (𝑧 ⊆ {𝑥𝜑} → 𝑧 ∈ {𝑥𝜑})
202, 19mpg 1797 . . . 4 {𝑥𝜑} = V
2120eqcomi 2746 . . 3 V = {𝑥𝜑}
2221eqabri 2885 . 2 (𝑥 ∈ V ↔ 𝜑)
231, 22mpbi 230 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {cab 2714  wral 3061  Vcvv 3480  [wsbc 3788  wss 3951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755  ax-reg 9632  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450
This theorem is referenced by:  setinds2f  35780
  Copyright terms: Public domain W3C validator