MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaid Structured version   Visualization version   GIF version

Theorem gaid 19339
Description: The trivial action of a group on any set. Each group element corresponds to the identity permutation. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
gaid.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
gaid ((𝐺 ∈ Grp ∧ 𝑆𝑉) → (2nd ↾ (𝑋 × 𝑆)) ∈ (𝐺 GrpAct 𝑆))

Proof of Theorem gaid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3509 . . 3 (𝑆𝑉𝑆 ∈ V)
21anim2i 616 . 2 ((𝐺 ∈ Grp ∧ 𝑆𝑉) → (𝐺 ∈ Grp ∧ 𝑆 ∈ V))
3 gaid.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
4 eqid 2740 . . . . . . . 8 (0g𝐺) = (0g𝐺)
53, 4grpidcl 19005 . . . . . . 7 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
65adantr 480 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑆𝑉) → (0g𝐺) ∈ 𝑋)
7 ovres 7616 . . . . . . 7 (((0g𝐺) ∈ 𝑋𝑥𝑆) → ((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = ((0g𝐺)2nd 𝑥))
8 df-ov 7451 . . . . . . . 8 ((0g𝐺)2nd 𝑥) = (2nd ‘⟨(0g𝐺), 𝑥⟩)
9 fvex 6933 . . . . . . . . 9 (0g𝐺) ∈ V
10 vex 3492 . . . . . . . . 9 𝑥 ∈ V
119, 10op2nd 8039 . . . . . . . 8 (2nd ‘⟨(0g𝐺), 𝑥⟩) = 𝑥
128, 11eqtri 2768 . . . . . . 7 ((0g𝐺)2nd 𝑥) = 𝑥
137, 12eqtrdi 2796 . . . . . 6 (((0g𝐺) ∈ 𝑋𝑥𝑆) → ((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
146, 13sylan 579 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) → ((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
15 simprl 770 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → 𝑦𝑋)
16 simplr 768 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → 𝑥𝑆)
17 ovres 7616 . . . . . . . . 9 ((𝑦𝑋𝑥𝑆) → (𝑦(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦2nd 𝑥))
18 df-ov 7451 . . . . . . . . . 10 (𝑦2nd 𝑥) = (2nd ‘⟨𝑦, 𝑥⟩)
19 vex 3492 . . . . . . . . . . 11 𝑦 ∈ V
2019, 10op2nd 8039 . . . . . . . . . 10 (2nd ‘⟨𝑦, 𝑥⟩) = 𝑥
2118, 20eqtri 2768 . . . . . . . . 9 (𝑦2nd 𝑥) = 𝑥
2217, 21eqtrdi 2796 . . . . . . . 8 ((𝑦𝑋𝑥𝑆) → (𝑦(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
2315, 16, 22syl2anc 583 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
24 simprr 772 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → 𝑧𝑋)
25 ovres 7616 . . . . . . . . . 10 ((𝑧𝑋𝑥𝑆) → (𝑧(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑧2nd 𝑥))
26 df-ov 7451 . . . . . . . . . . 11 (𝑧2nd 𝑥) = (2nd ‘⟨𝑧, 𝑥⟩)
27 vex 3492 . . . . . . . . . . . 12 𝑧 ∈ V
2827, 10op2nd 8039 . . . . . . . . . . 11 (2nd ‘⟨𝑧, 𝑥⟩) = 𝑥
2926, 28eqtri 2768 . . . . . . . . . 10 (𝑧2nd 𝑥) = 𝑥
3025, 29eqtrdi 2796 . . . . . . . . 9 ((𝑧𝑋𝑥𝑆) → (𝑧(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
3124, 16, 30syl2anc 583 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → (𝑧(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
3231oveq2d 7464 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥)) = (𝑦(2nd ↾ (𝑋 × 𝑆))𝑥))
33 eqid 2740 . . . . . . . . . . 11 (+g𝐺) = (+g𝐺)
343, 33grpcl 18981 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
35343expb 1120 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
3635ad4ant14 751 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
37 ovres 7616 . . . . . . . . 9 (((𝑦(+g𝐺)𝑧) ∈ 𝑋𝑥𝑆) → ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = ((𝑦(+g𝐺)𝑧)2nd 𝑥))
38 df-ov 7451 . . . . . . . . . 10 ((𝑦(+g𝐺)𝑧)2nd 𝑥) = (2nd ‘⟨(𝑦(+g𝐺)𝑧), 𝑥⟩)
39 ovex 7481 . . . . . . . . . . 11 (𝑦(+g𝐺)𝑧) ∈ V
4039, 10op2nd 8039 . . . . . . . . . 10 (2nd ‘⟨(𝑦(+g𝐺)𝑧), 𝑥⟩) = 𝑥
4138, 40eqtri 2768 . . . . . . . . 9 ((𝑦(+g𝐺)𝑧)2nd 𝑥) = 𝑥
4237, 41eqtrdi 2796 . . . . . . . 8 (((𝑦(+g𝐺)𝑧) ∈ 𝑋𝑥𝑆) → ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
4336, 16, 42syl2anc 583 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
4423, 32, 433eqtr4rd 2791 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥)))
4544ralrimivva 3208 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) → ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥)))
4614, 45jca 511 . . . 4 (((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) → (((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥))))
4746ralrimiva 3152 . . 3 ((𝐺 ∈ Grp ∧ 𝑆𝑉) → ∀𝑥𝑆 (((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥))))
48 f2ndres 8055 . . 3 (2nd ↾ (𝑋 × 𝑆)):(𝑋 × 𝑆)⟶𝑆
4947, 48jctil 519 . 2 ((𝐺 ∈ Grp ∧ 𝑆𝑉) → ((2nd ↾ (𝑋 × 𝑆)):(𝑋 × 𝑆)⟶𝑆 ∧ ∀𝑥𝑆 (((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥)))))
503, 33, 4isga 19331 . 2 ((2nd ↾ (𝑋 × 𝑆)) ∈ (𝐺 GrpAct 𝑆) ↔ ((𝐺 ∈ Grp ∧ 𝑆 ∈ V) ∧ ((2nd ↾ (𝑋 × 𝑆)):(𝑋 × 𝑆)⟶𝑆 ∧ ∀𝑥𝑆 (((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥))))))
512, 49, 50sylanbrc 582 1 ((𝐺 ∈ Grp ∧ 𝑆𝑉) → (2nd ↾ (𝑋 × 𝑆)) ∈ (𝐺 GrpAct 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cop 4654   × cxp 5698  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  2nd c2nd 8029  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973   GrpAct cga 19329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-2nd 8031  df-map 8886  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-ga 19330
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator