MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaid Structured version   Visualization version   GIF version

Theorem gaid 18421
Description: The trivial action of a group on any set. Each group element corresponds to the identity permutation. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
gaid.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
gaid ((𝐺 ∈ Grp ∧ 𝑆𝑉) → (2nd ↾ (𝑋 × 𝑆)) ∈ (𝐺 GrpAct 𝑆))

Proof of Theorem gaid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3459 . . 3 (𝑆𝑉𝑆 ∈ V)
21anim2i 619 . 2 ((𝐺 ∈ Grp ∧ 𝑆𝑉) → (𝐺 ∈ Grp ∧ 𝑆 ∈ V))
3 gaid.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
4 eqid 2798 . . . . . . . 8 (0g𝐺) = (0g𝐺)
53, 4grpidcl 18123 . . . . . . 7 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
65adantr 484 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑆𝑉) → (0g𝐺) ∈ 𝑋)
7 ovres 7294 . . . . . . 7 (((0g𝐺) ∈ 𝑋𝑥𝑆) → ((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = ((0g𝐺)2nd 𝑥))
8 df-ov 7138 . . . . . . . 8 ((0g𝐺)2nd 𝑥) = (2nd ‘⟨(0g𝐺), 𝑥⟩)
9 fvex 6658 . . . . . . . . 9 (0g𝐺) ∈ V
10 vex 3444 . . . . . . . . 9 𝑥 ∈ V
119, 10op2nd 7680 . . . . . . . 8 (2nd ‘⟨(0g𝐺), 𝑥⟩) = 𝑥
128, 11eqtri 2821 . . . . . . 7 ((0g𝐺)2nd 𝑥) = 𝑥
137, 12eqtrdi 2849 . . . . . 6 (((0g𝐺) ∈ 𝑋𝑥𝑆) → ((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
146, 13sylan 583 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) → ((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
15 simprl 770 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → 𝑦𝑋)
16 simplr 768 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → 𝑥𝑆)
17 ovres 7294 . . . . . . . . 9 ((𝑦𝑋𝑥𝑆) → (𝑦(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦2nd 𝑥))
18 df-ov 7138 . . . . . . . . . 10 (𝑦2nd 𝑥) = (2nd ‘⟨𝑦, 𝑥⟩)
19 vex 3444 . . . . . . . . . . 11 𝑦 ∈ V
2019, 10op2nd 7680 . . . . . . . . . 10 (2nd ‘⟨𝑦, 𝑥⟩) = 𝑥
2118, 20eqtri 2821 . . . . . . . . 9 (𝑦2nd 𝑥) = 𝑥
2217, 21eqtrdi 2849 . . . . . . . 8 ((𝑦𝑋𝑥𝑆) → (𝑦(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
2315, 16, 22syl2anc 587 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
24 simprr 772 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → 𝑧𝑋)
25 ovres 7294 . . . . . . . . . 10 ((𝑧𝑋𝑥𝑆) → (𝑧(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑧2nd 𝑥))
26 df-ov 7138 . . . . . . . . . . 11 (𝑧2nd 𝑥) = (2nd ‘⟨𝑧, 𝑥⟩)
27 vex 3444 . . . . . . . . . . . 12 𝑧 ∈ V
2827, 10op2nd 7680 . . . . . . . . . . 11 (2nd ‘⟨𝑧, 𝑥⟩) = 𝑥
2926, 28eqtri 2821 . . . . . . . . . 10 (𝑧2nd 𝑥) = 𝑥
3025, 29eqtrdi 2849 . . . . . . . . 9 ((𝑧𝑋𝑥𝑆) → (𝑧(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
3124, 16, 30syl2anc 587 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → (𝑧(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
3231oveq2d 7151 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥)) = (𝑦(2nd ↾ (𝑋 × 𝑆))𝑥))
33 eqid 2798 . . . . . . . . . . 11 (+g𝐺) = (+g𝐺)
343, 33grpcl 18103 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
35343expb 1117 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
3635ad4ant14 751 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
37 ovres 7294 . . . . . . . . 9 (((𝑦(+g𝐺)𝑧) ∈ 𝑋𝑥𝑆) → ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = ((𝑦(+g𝐺)𝑧)2nd 𝑥))
38 df-ov 7138 . . . . . . . . . 10 ((𝑦(+g𝐺)𝑧)2nd 𝑥) = (2nd ‘⟨(𝑦(+g𝐺)𝑧), 𝑥⟩)
39 ovex 7168 . . . . . . . . . . 11 (𝑦(+g𝐺)𝑧) ∈ V
4039, 10op2nd 7680 . . . . . . . . . 10 (2nd ‘⟨(𝑦(+g𝐺)𝑧), 𝑥⟩) = 𝑥
4138, 40eqtri 2821 . . . . . . . . 9 ((𝑦(+g𝐺)𝑧)2nd 𝑥) = 𝑥
4237, 41eqtrdi 2849 . . . . . . . 8 (((𝑦(+g𝐺)𝑧) ∈ 𝑋𝑥𝑆) → ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
4336, 16, 42syl2anc 587 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
4423, 32, 433eqtr4rd 2844 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥)))
4544ralrimivva 3156 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) → ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥)))
4614, 45jca 515 . . . 4 (((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) → (((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥))))
4746ralrimiva 3149 . . 3 ((𝐺 ∈ Grp ∧ 𝑆𝑉) → ∀𝑥𝑆 (((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥))))
48 f2ndres 7696 . . 3 (2nd ↾ (𝑋 × 𝑆)):(𝑋 × 𝑆)⟶𝑆
4947, 48jctil 523 . 2 ((𝐺 ∈ Grp ∧ 𝑆𝑉) → ((2nd ↾ (𝑋 × 𝑆)):(𝑋 × 𝑆)⟶𝑆 ∧ ∀𝑥𝑆 (((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥)))))
503, 33, 4isga 18413 . 2 ((2nd ↾ (𝑋 × 𝑆)) ∈ (𝐺 GrpAct 𝑆) ↔ ((𝐺 ∈ Grp ∧ 𝑆 ∈ V) ∧ ((2nd ↾ (𝑋 × 𝑆)):(𝑋 × 𝑆)⟶𝑆 ∧ ∀𝑥𝑆 (((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥))))))
512, 49, 50sylanbrc 586 1 ((𝐺 ∈ Grp ∧ 𝑆𝑉) → (2nd ↾ (𝑋 × 𝑆)) ∈ (𝐺 GrpAct 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  cop 4531   × cxp 5517  cres 5521  wf 6320  cfv 6324  (class class class)co 7135  2nd c2nd 7670  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Grpcgrp 18095   GrpAct cga 18411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-2nd 7672  df-map 8391  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-ga 18412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator