MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaid Structured version   Visualization version   GIF version

Theorem gaid 18048
Description: The trivial action of a group on any set. Each group element corresponds to the identity permutation. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
gaid.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
gaid ((𝐺 ∈ Grp ∧ 𝑆𝑉) → (2nd ↾ (𝑋 × 𝑆)) ∈ (𝐺 GrpAct 𝑆))

Proof of Theorem gaid
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3404 . . 3 (𝑆𝑉𝑆 ∈ V)
21anim2i 611 . 2 ((𝐺 ∈ Grp ∧ 𝑆𝑉) → (𝐺 ∈ Grp ∧ 𝑆 ∈ V))
3 gaid.1 . . . . . . . 8 𝑋 = (Base‘𝐺)
4 eqid 2803 . . . . . . . 8 (0g𝐺) = (0g𝐺)
53, 4grpidcl 17770 . . . . . . 7 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
65adantr 473 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑆𝑉) → (0g𝐺) ∈ 𝑋)
7 ovres 7038 . . . . . . 7 (((0g𝐺) ∈ 𝑋𝑥𝑆) → ((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = ((0g𝐺)2nd 𝑥))
8 df-ov 6885 . . . . . . . 8 ((0g𝐺)2nd 𝑥) = (2nd ‘⟨(0g𝐺), 𝑥⟩)
9 fvex 6428 . . . . . . . . 9 (0g𝐺) ∈ V
10 vex 3392 . . . . . . . . 9 𝑥 ∈ V
119, 10op2nd 7414 . . . . . . . 8 (2nd ‘⟨(0g𝐺), 𝑥⟩) = 𝑥
128, 11eqtri 2825 . . . . . . 7 ((0g𝐺)2nd 𝑥) = 𝑥
137, 12syl6eq 2853 . . . . . 6 (((0g𝐺) ∈ 𝑋𝑥𝑆) → ((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
146, 13sylan 576 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) → ((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
15 simprl 788 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → 𝑦𝑋)
16 simplr 786 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → 𝑥𝑆)
17 ovres 7038 . . . . . . . . 9 ((𝑦𝑋𝑥𝑆) → (𝑦(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦2nd 𝑥))
18 df-ov 6885 . . . . . . . . . 10 (𝑦2nd 𝑥) = (2nd ‘⟨𝑦, 𝑥⟩)
19 vex 3392 . . . . . . . . . . 11 𝑦 ∈ V
2019, 10op2nd 7414 . . . . . . . . . 10 (2nd ‘⟨𝑦, 𝑥⟩) = 𝑥
2118, 20eqtri 2825 . . . . . . . . 9 (𝑦2nd 𝑥) = 𝑥
2217, 21syl6eq 2853 . . . . . . . 8 ((𝑦𝑋𝑥𝑆) → (𝑦(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
2315, 16, 22syl2anc 580 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
24 simprr 790 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → 𝑧𝑋)
25 ovres 7038 . . . . . . . . . 10 ((𝑧𝑋𝑥𝑆) → (𝑧(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑧2nd 𝑥))
26 df-ov 6885 . . . . . . . . . . 11 (𝑧2nd 𝑥) = (2nd ‘⟨𝑧, 𝑥⟩)
27 vex 3392 . . . . . . . . . . . 12 𝑧 ∈ V
2827, 10op2nd 7414 . . . . . . . . . . 11 (2nd ‘⟨𝑧, 𝑥⟩) = 𝑥
2926, 28eqtri 2825 . . . . . . . . . 10 (𝑧2nd 𝑥) = 𝑥
3025, 29syl6eq 2853 . . . . . . . . 9 ((𝑧𝑋𝑥𝑆) → (𝑧(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
3124, 16, 30syl2anc 580 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → (𝑧(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
3231oveq2d 6898 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥)) = (𝑦(2nd ↾ (𝑋 × 𝑆))𝑥))
33 simpll 784 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) → 𝐺 ∈ Grp)
34 eqid 2803 . . . . . . . . . . 11 (+g𝐺) = (+g𝐺)
353, 34grpcl 17750 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝑧𝑋) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
36353expb 1150 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
3733, 36sylan 576 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(+g𝐺)𝑧) ∈ 𝑋)
38 ovres 7038 . . . . . . . . 9 (((𝑦(+g𝐺)𝑧) ∈ 𝑋𝑥𝑆) → ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = ((𝑦(+g𝐺)𝑧)2nd 𝑥))
39 df-ov 6885 . . . . . . . . . 10 ((𝑦(+g𝐺)𝑧)2nd 𝑥) = (2nd ‘⟨(𝑦(+g𝐺)𝑧), 𝑥⟩)
40 ovex 6914 . . . . . . . . . . 11 (𝑦(+g𝐺)𝑧) ∈ V
4140, 10op2nd 7414 . . . . . . . . . 10 (2nd ‘⟨(𝑦(+g𝐺)𝑧), 𝑥⟩) = 𝑥
4239, 41eqtri 2825 . . . . . . . . 9 ((𝑦(+g𝐺)𝑧)2nd 𝑥) = 𝑥
4338, 42syl6eq 2853 . . . . . . . 8 (((𝑦(+g𝐺)𝑧) ∈ 𝑋𝑥𝑆) → ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
4437, 16, 43syl2anc 580 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥)
4523, 32, 443eqtr4rd 2848 . . . . . 6 ((((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) ∧ (𝑦𝑋𝑧𝑋)) → ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥)))
4645ralrimivva 3156 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) → ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥)))
4714, 46jca 508 . . . 4 (((𝐺 ∈ Grp ∧ 𝑆𝑉) ∧ 𝑥𝑆) → (((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥))))
4847ralrimiva 3151 . . 3 ((𝐺 ∈ Grp ∧ 𝑆𝑉) → ∀𝑥𝑆 (((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥))))
49 f2ndres 7430 . . 3 (2nd ↾ (𝑋 × 𝑆)):(𝑋 × 𝑆)⟶𝑆
5048, 49jctil 516 . 2 ((𝐺 ∈ Grp ∧ 𝑆𝑉) → ((2nd ↾ (𝑋 × 𝑆)):(𝑋 × 𝑆)⟶𝑆 ∧ ∀𝑥𝑆 (((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥)))))
513, 34, 4isga 18040 . 2 ((2nd ↾ (𝑋 × 𝑆)) ∈ (𝐺 GrpAct 𝑆) ↔ ((𝐺 ∈ Grp ∧ 𝑆 ∈ V) ∧ ((2nd ↾ (𝑋 × 𝑆)):(𝑋 × 𝑆)⟶𝑆 ∧ ∀𝑥𝑆 (((0g𝐺)(2nd ↾ (𝑋 × 𝑆))𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧)(2nd ↾ (𝑋 × 𝑆))𝑥) = (𝑦(2nd ↾ (𝑋 × 𝑆))(𝑧(2nd ↾ (𝑋 × 𝑆))𝑥))))))
522, 50, 51sylanbrc 579 1 ((𝐺 ∈ Grp ∧ 𝑆𝑉) → (2nd ↾ (𝑋 × 𝑆)) ∈ (𝐺 GrpAct 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wral 3093  Vcvv 3389  cop 4378   × cxp 5314  cres 5318  wf 6101  cfv 6105  (class class class)co 6882  2nd c2nd 7404  Basecbs 16188  +gcplusg 16271  0gc0g 16419  Grpcgrp 17742   GrpAct cga 18038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2379  ax-ext 2781  ax-sep 4979  ax-nul 4987  ax-pow 5039  ax-pr 5101  ax-un 7187
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2593  df-eu 2611  df-clab 2790  df-cleq 2796  df-clel 2799  df-nfc 2934  df-ne 2976  df-ral 3098  df-rex 3099  df-reu 3100  df-rmo 3101  df-rab 3102  df-v 3391  df-sbc 3638  df-csb 3733  df-dif 3776  df-un 3778  df-in 3780  df-ss 3787  df-nul 4120  df-if 4282  df-pw 4355  df-sn 4373  df-pr 4375  df-op 4379  df-uni 4633  df-iun 4716  df-br 4848  df-opab 4910  df-mpt 4927  df-id 5224  df-xp 5322  df-rel 5323  df-cnv 5324  df-co 5325  df-dm 5326  df-rn 5327  df-res 5328  df-ima 5329  df-iota 6068  df-fun 6107  df-fn 6108  df-f 6109  df-fv 6113  df-riota 6843  df-ov 6885  df-oprab 6886  df-mpt2 6887  df-2nd 7406  df-map 8101  df-0g 16421  df-mgm 17561  df-sgrp 17603  df-mnd 17614  df-grp 17745  df-ga 18039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator