MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaass Structured version   Visualization version   GIF version

Theorem gaass 18419
Description: An "associative" property for group actions. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
gaass.1 𝑋 = (Base‘𝐺)
gaass.2 + = (+g𝐺)
Assertion
Ref Expression
gaass (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑋𝐶𝑌)) → ((𝐴 + 𝐵) 𝐶) = (𝐴 (𝐵 𝐶)))

Proof of Theorem gaass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaass.1 . . . . . . 7 𝑋 = (Base‘𝐺)
2 gaass.2 . . . . . . 7 + = (+g𝐺)
3 eqid 2798 . . . . . . 7 (0g𝐺) = (0g𝐺)
41, 2, 3isga 18413 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (((0g𝐺) 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
54simprbi 500 . . . . 5 ( ∈ (𝐺 GrpAct 𝑌) → ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (((0g𝐺) 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))))
6 simpr 488 . . . . . 6 ((((0g𝐺) 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))) → ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))
76ralimi 3128 . . . . 5 (∀𝑥𝑌 (((0g𝐺) 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))) → ∀𝑥𝑌𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))
85, 7simpl2im 507 . . . 4 ( ∈ (𝐺 GrpAct 𝑌) → ∀𝑥𝑌𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))
9 oveq2 7143 . . . . . 6 (𝑥 = 𝐶 → ((𝑦 + 𝑧) 𝑥) = ((𝑦 + 𝑧) 𝐶))
10 oveq2 7143 . . . . . . 7 (𝑥 = 𝐶 → (𝑧 𝑥) = (𝑧 𝐶))
1110oveq2d 7151 . . . . . 6 (𝑥 = 𝐶 → (𝑦 (𝑧 𝑥)) = (𝑦 (𝑧 𝐶)))
129, 11eqeq12d 2814 . . . . 5 (𝑥 = 𝐶 → (((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)) ↔ ((𝑦 + 𝑧) 𝐶) = (𝑦 (𝑧 𝐶))))
13 oveq1 7142 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 + 𝑧) = (𝐴 + 𝑧))
1413oveq1d 7150 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 + 𝑧) 𝐶) = ((𝐴 + 𝑧) 𝐶))
15 oveq1 7142 . . . . . 6 (𝑦 = 𝐴 → (𝑦 (𝑧 𝐶)) = (𝐴 (𝑧 𝐶)))
1614, 15eqeq12d 2814 . . . . 5 (𝑦 = 𝐴 → (((𝑦 + 𝑧) 𝐶) = (𝑦 (𝑧 𝐶)) ↔ ((𝐴 + 𝑧) 𝐶) = (𝐴 (𝑧 𝐶))))
17 oveq2 7143 . . . . . . 7 (𝑧 = 𝐵 → (𝐴 + 𝑧) = (𝐴 + 𝐵))
1817oveq1d 7150 . . . . . 6 (𝑧 = 𝐵 → ((𝐴 + 𝑧) 𝐶) = ((𝐴 + 𝐵) 𝐶))
19 oveq1 7142 . . . . . . 7 (𝑧 = 𝐵 → (𝑧 𝐶) = (𝐵 𝐶))
2019oveq2d 7151 . . . . . 6 (𝑧 = 𝐵 → (𝐴 (𝑧 𝐶)) = (𝐴 (𝐵 𝐶)))
2118, 20eqeq12d 2814 . . . . 5 (𝑧 = 𝐵 → (((𝐴 + 𝑧) 𝐶) = (𝐴 (𝑧 𝐶)) ↔ ((𝐴 + 𝐵) 𝐶) = (𝐴 (𝐵 𝐶))))
2212, 16, 21rspc3v 3584 . . . 4 ((𝐶𝑌𝐴𝑋𝐵𝑋) → (∀𝑥𝑌𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)) → ((𝐴 + 𝐵) 𝐶) = (𝐴 (𝐵 𝐶))))
238, 22syl5 34 . . 3 ((𝐶𝑌𝐴𝑋𝐵𝑋) → ( ∈ (𝐺 GrpAct 𝑌) → ((𝐴 + 𝐵) 𝐶) = (𝐴 (𝐵 𝐶))))
24233coml 1124 . 2 ((𝐴𝑋𝐵𝑋𝐶𝑌) → ( ∈ (𝐺 GrpAct 𝑌) → ((𝐴 + 𝐵) 𝐶) = (𝐴 (𝐵 𝐶))))
2524impcom 411 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑋𝐶𝑌)) → ((𝐴 + 𝐵) 𝐶) = (𝐴 (𝐵 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441   × cxp 5517  wf 6320  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Grpcgrp 18095   GrpAct cga 18411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-ga 18412
This theorem is referenced by:  gass  18423  gasubg  18424  galcan  18426  gacan  18427  gaorber  18430  gastacl  18431  gastacos  18432  galactghm  18524
  Copyright terms: Public domain W3C validator