MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaass Structured version   Visualization version   GIF version

Theorem gaass 19229
Description: An "associative" property for group actions. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
gaass.1 𝑋 = (Base‘𝐺)
gaass.2 + = (+g𝐺)
Assertion
Ref Expression
gaass (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑋𝐶𝑌)) → ((𝐴 + 𝐵) 𝐶) = (𝐴 (𝐵 𝐶)))

Proof of Theorem gaass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaass.1 . . . . . . 7 𝑋 = (Base‘𝐺)
2 gaass.2 . . . . . . 7 + = (+g𝐺)
3 eqid 2729 . . . . . . 7 (0g𝐺) = (0g𝐺)
41, 2, 3isga 19223 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (((0g𝐺) 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
54simprbi 496 . . . . 5 ( ∈ (𝐺 GrpAct 𝑌) → ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (((0g𝐺) 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))))
6 simpr 484 . . . . . 6 ((((0g𝐺) 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))) → ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))
76ralimi 3066 . . . . 5 (∀𝑥𝑌 (((0g𝐺) 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥))) → ∀𝑥𝑌𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))
85, 7simpl2im 503 . . . 4 ( ∈ (𝐺 GrpAct 𝑌) → ∀𝑥𝑌𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))
9 oveq2 7395 . . . . . 6 (𝑥 = 𝐶 → ((𝑦 + 𝑧) 𝑥) = ((𝑦 + 𝑧) 𝐶))
10 oveq2 7395 . . . . . . 7 (𝑥 = 𝐶 → (𝑧 𝑥) = (𝑧 𝐶))
1110oveq2d 7403 . . . . . 6 (𝑥 = 𝐶 → (𝑦 (𝑧 𝑥)) = (𝑦 (𝑧 𝐶)))
129, 11eqeq12d 2745 . . . . 5 (𝑥 = 𝐶 → (((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)) ↔ ((𝑦 + 𝑧) 𝐶) = (𝑦 (𝑧 𝐶))))
13 oveq1 7394 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 + 𝑧) = (𝐴 + 𝑧))
1413oveq1d 7402 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 + 𝑧) 𝐶) = ((𝐴 + 𝑧) 𝐶))
15 oveq1 7394 . . . . . 6 (𝑦 = 𝐴 → (𝑦 (𝑧 𝐶)) = (𝐴 (𝑧 𝐶)))
1614, 15eqeq12d 2745 . . . . 5 (𝑦 = 𝐴 → (((𝑦 + 𝑧) 𝐶) = (𝑦 (𝑧 𝐶)) ↔ ((𝐴 + 𝑧) 𝐶) = (𝐴 (𝑧 𝐶))))
17 oveq2 7395 . . . . . . 7 (𝑧 = 𝐵 → (𝐴 + 𝑧) = (𝐴 + 𝐵))
1817oveq1d 7402 . . . . . 6 (𝑧 = 𝐵 → ((𝐴 + 𝑧) 𝐶) = ((𝐴 + 𝐵) 𝐶))
19 oveq1 7394 . . . . . . 7 (𝑧 = 𝐵 → (𝑧 𝐶) = (𝐵 𝐶))
2019oveq2d 7403 . . . . . 6 (𝑧 = 𝐵 → (𝐴 (𝑧 𝐶)) = (𝐴 (𝐵 𝐶)))
2118, 20eqeq12d 2745 . . . . 5 (𝑧 = 𝐵 → (((𝐴 + 𝑧) 𝐶) = (𝐴 (𝑧 𝐶)) ↔ ((𝐴 + 𝐵) 𝐶) = (𝐴 (𝐵 𝐶))))
2212, 16, 21rspc3v 3604 . . . 4 ((𝐶𝑌𝐴𝑋𝐵𝑋) → (∀𝑥𝑌𝑦𝑋𝑧𝑋 ((𝑦 + 𝑧) 𝑥) = (𝑦 (𝑧 𝑥)) → ((𝐴 + 𝐵) 𝐶) = (𝐴 (𝐵 𝐶))))
238, 22syl5 34 . . 3 ((𝐶𝑌𝐴𝑋𝐵𝑋) → ( ∈ (𝐺 GrpAct 𝑌) → ((𝐴 + 𝐵) 𝐶) = (𝐴 (𝐵 𝐶))))
24233coml 1127 . 2 ((𝐴𝑋𝐵𝑋𝐶𝑌) → ( ∈ (𝐺 GrpAct 𝑌) → ((𝐴 + 𝐵) 𝐶) = (𝐴 (𝐵 𝐶))))
2524impcom 407 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴𝑋𝐵𝑋𝐶𝑌)) → ((𝐴 + 𝐵) 𝐶) = (𝐴 (𝐵 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Grpcgrp 18865   GrpAct cga 19221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-ga 19222
This theorem is referenced by:  gass  19233  gasubg  19234  galcan  19236  gacan  19237  gaorber  19240  gastacl  19241  gastacos  19242  galactghm  19334
  Copyright terms: Public domain W3C validator