Step | Hyp | Ref
| Expression |
1 | | gaass.1 |
. . . . . . 7
⊢ 𝑋 = (Base‘𝐺) |
2 | | gaass.2 |
. . . . . . 7
⊢ + =
(+g‘𝐺) |
3 | | eqid 2733 |
. . . . . . 7
⊢
(0g‘𝐺) = (0g‘𝐺) |
4 | 1, 2, 3 | isga 18925 |
. . . . . 6
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( ⊕ :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (((0g‘𝐺) ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))))) |
5 | 4 | simprbi 496 |
. . . . 5
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → ( ⊕ :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (((0g‘𝐺) ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))))) |
6 | | simpr 484 |
. . . . . 6
⊢
((((0g‘𝐺) ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) → ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) |
7 | 6 | ralimi 3080 |
. . . . 5
⊢
(∀𝑥 ∈
𝑌
(((0g‘𝐺)
⊕
𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) → ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) |
8 | 5, 7 | simpl2im 503 |
. . . 4
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → ∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))) |
9 | | oveq2 7303 |
. . . . . 6
⊢ (𝑥 = 𝐶 → ((𝑦 + 𝑧) ⊕ 𝑥) = ((𝑦 + 𝑧) ⊕ 𝐶)) |
10 | | oveq2 7303 |
. . . . . . 7
⊢ (𝑥 = 𝐶 → (𝑧 ⊕ 𝑥) = (𝑧 ⊕ 𝐶)) |
11 | 10 | oveq2d 7311 |
. . . . . 6
⊢ (𝑥 = 𝐶 → (𝑦 ⊕ (𝑧 ⊕ 𝑥)) = (𝑦 ⊕ (𝑧 ⊕ 𝐶))) |
12 | 9, 11 | eqeq12d 2749 |
. . . . 5
⊢ (𝑥 = 𝐶 → (((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)) ↔ ((𝑦 + 𝑧) ⊕ 𝐶) = (𝑦 ⊕ (𝑧 ⊕ 𝐶)))) |
13 | | oveq1 7302 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑦 + 𝑧) = (𝐴 + 𝑧)) |
14 | 13 | oveq1d 7310 |
. . . . . 6
⊢ (𝑦 = 𝐴 → ((𝑦 + 𝑧) ⊕ 𝐶) = ((𝐴 + 𝑧) ⊕ 𝐶)) |
15 | | oveq1 7302 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (𝑦 ⊕ (𝑧 ⊕ 𝐶)) = (𝐴 ⊕ (𝑧 ⊕ 𝐶))) |
16 | 14, 15 | eqeq12d 2749 |
. . . . 5
⊢ (𝑦 = 𝐴 → (((𝑦 + 𝑧) ⊕ 𝐶) = (𝑦 ⊕ (𝑧 ⊕ 𝐶)) ↔ ((𝐴 + 𝑧) ⊕ 𝐶) = (𝐴 ⊕ (𝑧 ⊕ 𝐶)))) |
17 | | oveq2 7303 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → (𝐴 + 𝑧) = (𝐴 + 𝐵)) |
18 | 17 | oveq1d 7310 |
. . . . . 6
⊢ (𝑧 = 𝐵 → ((𝐴 + 𝑧) ⊕ 𝐶) = ((𝐴 + 𝐵) ⊕ 𝐶)) |
19 | | oveq1 7302 |
. . . . . . 7
⊢ (𝑧 = 𝐵 → (𝑧 ⊕ 𝐶) = (𝐵 ⊕ 𝐶)) |
20 | 19 | oveq2d 7311 |
. . . . . 6
⊢ (𝑧 = 𝐵 → (𝐴 ⊕ (𝑧 ⊕ 𝐶)) = (𝐴 ⊕ (𝐵 ⊕ 𝐶))) |
21 | 18, 20 | eqeq12d 2749 |
. . . . 5
⊢ (𝑧 = 𝐵 → (((𝐴 + 𝑧) ⊕ 𝐶) = (𝐴 ⊕ (𝑧 ⊕ 𝐶)) ↔ ((𝐴 + 𝐵) ⊕ 𝐶) = (𝐴 ⊕ (𝐵 ⊕ 𝐶)))) |
22 | 12, 16, 21 | rspc3v 3575 |
. . . 4
⊢ ((𝐶 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)) → ((𝐴 + 𝐵) ⊕ 𝐶) = (𝐴 ⊕ (𝐵 ⊕ 𝐶)))) |
23 | 8, 22 | syl5 34 |
. . 3
⊢ ((𝐶 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ((𝐴 + 𝐵) ⊕ 𝐶) = (𝐴 ⊕ (𝐵 ⊕ 𝐶)))) |
24 | 23 | 3coml 1125 |
. 2
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑌) → ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ((𝐴 + 𝐵) ⊕ 𝐶) = (𝐴 ⊕ (𝐵 ⊕ 𝐶)))) |
25 | 24 | impcom 407 |
1
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑌)) → ((𝐴 + 𝐵) ⊕ 𝐶) = (𝐴 ⊕ (𝐵 ⊕ 𝐶))) |