MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidinv Structured version   Visualization version   GIF version

Theorem grpidinv 18883
Description: A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006.) (Revised by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grpidinv.b 𝐵 = (Base‘𝐺)
grpidinv.p + = (+g𝐺)
Assertion
Ref Expression
grpidinv (𝐺 ∈ Grp → ∃𝑢𝐵𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)))
Distinct variable groups:   𝑢,𝐺,𝑥,𝑦   𝑢,𝐵,𝑦   𝑢, + ,𝑦
Allowed substitution hints:   𝐵(𝑥)   + (𝑥)

Proof of Theorem grpidinv
StepHypRef Expression
1 grpidinv.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2733 . . 3 (0g𝐺) = (0g𝐺)
31, 2grpidcl 18850 . 2 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
4 oveq1 7416 . . . . . . 7 (𝑢 = (0g𝐺) → (𝑢 + 𝑥) = ((0g𝐺) + 𝑥))
54eqeq1d 2735 . . . . . 6 (𝑢 = (0g𝐺) → ((𝑢 + 𝑥) = 𝑥 ↔ ((0g𝐺) + 𝑥) = 𝑥))
6 oveq2 7417 . . . . . . 7 (𝑢 = (0g𝐺) → (𝑥 + 𝑢) = (𝑥 + (0g𝐺)))
76eqeq1d 2735 . . . . . 6 (𝑢 = (0g𝐺) → ((𝑥 + 𝑢) = 𝑥 ↔ (𝑥 + (0g𝐺)) = 𝑥))
85, 7anbi12d 632 . . . . 5 (𝑢 = (0g𝐺) → (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ↔ (((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥)))
9 eqeq2 2745 . . . . . . 7 (𝑢 = (0g𝐺) → ((𝑦 + 𝑥) = 𝑢 ↔ (𝑦 + 𝑥) = (0g𝐺)))
10 eqeq2 2745 . . . . . . 7 (𝑢 = (0g𝐺) → ((𝑥 + 𝑦) = 𝑢 ↔ (𝑥 + 𝑦) = (0g𝐺)))
119, 10anbi12d 632 . . . . . 6 (𝑢 = (0g𝐺) → (((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢) ↔ ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
1211rexbidv 3179 . . . . 5 (𝑢 = (0g𝐺) → (∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢) ↔ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
138, 12anbi12d 632 . . . 4 (𝑢 = (0g𝐺) → ((((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺)))))
1413ralbidv 3178 . . 3 (𝑢 = (0g𝐺) → (∀𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ∀𝑥𝐵 ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺)))))
1514adantl 483 . 2 ((𝐺 ∈ Grp ∧ 𝑢 = (0g𝐺)) → (∀𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ∀𝑥𝐵 ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺)))))
16 grpidinv.p . . . 4 + = (+g𝐺)
171, 16, 2grpidinv2 18882 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
1817ralrimiva 3147 . 2 (𝐺 ∈ Grp → ∀𝑥𝐵 ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
193, 15, 18rspcedvd 3615 1 (𝐺 ∈ Grp → ∃𝑢𝐵𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  wrex 3071  cfv 6544  (class class class)co 7409  Basecbs 17144  +gcplusg 17197  0gc0g 17385  Grpcgrp 18819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-riota 7365  df-ov 7412  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-minusg 18823
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator