Proof of Theorem grpidinv
Step | Hyp | Ref
| Expression |
1 | | grpidinv.b |
. . 3
⊢ 𝐵 = (Base‘𝐺) |
2 | | eqid 2738 |
. . 3
⊢
(0g‘𝐺) = (0g‘𝐺) |
3 | 1, 2 | grpidcl 18522 |
. 2
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) |
4 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑢 = (0g‘𝐺) → (𝑢 + 𝑥) = ((0g‘𝐺) + 𝑥)) |
5 | 4 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑢 = (0g‘𝐺) → ((𝑢 + 𝑥) = 𝑥 ↔ ((0g‘𝐺) + 𝑥) = 𝑥)) |
6 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑢 = (0g‘𝐺) → (𝑥 + 𝑢) = (𝑥 + (0g‘𝐺))) |
7 | 6 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑢 = (0g‘𝐺) → ((𝑥 + 𝑢) = 𝑥 ↔ (𝑥 + (0g‘𝐺)) = 𝑥)) |
8 | 5, 7 | anbi12d 630 |
. . . . 5
⊢ (𝑢 = (0g‘𝐺) → (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ↔ (((0g‘𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g‘𝐺)) = 𝑥))) |
9 | | eqeq2 2750 |
. . . . . . 7
⊢ (𝑢 = (0g‘𝐺) → ((𝑦 + 𝑥) = 𝑢 ↔ (𝑦 + 𝑥) = (0g‘𝐺))) |
10 | | eqeq2 2750 |
. . . . . . 7
⊢ (𝑢 = (0g‘𝐺) → ((𝑥 + 𝑦) = 𝑢 ↔ (𝑥 + 𝑦) = (0g‘𝐺))) |
11 | 9, 10 | anbi12d 630 |
. . . . . 6
⊢ (𝑢 = (0g‘𝐺) → (((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢) ↔ ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺)))) |
12 | 11 | rexbidv 3225 |
. . . . 5
⊢ (𝑢 = (0g‘𝐺) → (∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢) ↔ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺)))) |
13 | 8, 12 | anbi12d 630 |
. . . 4
⊢ (𝑢 = (0g‘𝐺) → ((((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ((((0g‘𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g‘𝐺)) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺))))) |
14 | 13 | ralbidv 3120 |
. . 3
⊢ (𝑢 = (0g‘𝐺) → (∀𝑥 ∈ 𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ∀𝑥 ∈ 𝐵 ((((0g‘𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g‘𝐺)) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺))))) |
15 | 14 | adantl 481 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝑢 = (0g‘𝐺)) → (∀𝑥 ∈ 𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ∀𝑥 ∈ 𝐵 ((((0g‘𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g‘𝐺)) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺))))) |
16 | | grpidinv.p |
. . . 4
⊢ + =
(+g‘𝐺) |
17 | 1, 16, 2 | grpidinv2 18549 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((((0g‘𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g‘𝐺)) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺)))) |
18 | 17 | ralrimiva 3107 |
. 2
⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ((((0g‘𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g‘𝐺)) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = (0g‘𝐺) ∧ (𝑥 + 𝑦) = (0g‘𝐺)))) |
19 | 3, 15, 18 | rspcedvd 3555 |
1
⊢ (𝐺 ∈ Grp → ∃𝑢 ∈ 𝐵 ∀𝑥 ∈ 𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢))) |