MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidinv Structured version   Visualization version   GIF version

Theorem grpidinv 19016
Description: A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006.) (Revised by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grpidinv.b 𝐵 = (Base‘𝐺)
grpidinv.p + = (+g𝐺)
Assertion
Ref Expression
grpidinv (𝐺 ∈ Grp → ∃𝑢𝐵𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)))
Distinct variable groups:   𝑢,𝐺,𝑥,𝑦   𝑢,𝐵,𝑦   𝑢, + ,𝑦
Allowed substitution hints:   𝐵(𝑥)   + (𝑥)

Proof of Theorem grpidinv
StepHypRef Expression
1 grpidinv.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2737 . . 3 (0g𝐺) = (0g𝐺)
31, 2grpidcl 18983 . 2 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
4 oveq1 7438 . . . . . . 7 (𝑢 = (0g𝐺) → (𝑢 + 𝑥) = ((0g𝐺) + 𝑥))
54eqeq1d 2739 . . . . . 6 (𝑢 = (0g𝐺) → ((𝑢 + 𝑥) = 𝑥 ↔ ((0g𝐺) + 𝑥) = 𝑥))
6 oveq2 7439 . . . . . . 7 (𝑢 = (0g𝐺) → (𝑥 + 𝑢) = (𝑥 + (0g𝐺)))
76eqeq1d 2739 . . . . . 6 (𝑢 = (0g𝐺) → ((𝑥 + 𝑢) = 𝑥 ↔ (𝑥 + (0g𝐺)) = 𝑥))
85, 7anbi12d 632 . . . . 5 (𝑢 = (0g𝐺) → (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ↔ (((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥)))
9 eqeq2 2749 . . . . . . 7 (𝑢 = (0g𝐺) → ((𝑦 + 𝑥) = 𝑢 ↔ (𝑦 + 𝑥) = (0g𝐺)))
10 eqeq2 2749 . . . . . . 7 (𝑢 = (0g𝐺) → ((𝑥 + 𝑦) = 𝑢 ↔ (𝑥 + 𝑦) = (0g𝐺)))
119, 10anbi12d 632 . . . . . 6 (𝑢 = (0g𝐺) → (((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢) ↔ ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
1211rexbidv 3179 . . . . 5 (𝑢 = (0g𝐺) → (∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢) ↔ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
138, 12anbi12d 632 . . . 4 (𝑢 = (0g𝐺) → ((((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺)))))
1413ralbidv 3178 . . 3 (𝑢 = (0g𝐺) → (∀𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ∀𝑥𝐵 ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺)))))
1514adantl 481 . 2 ((𝐺 ∈ Grp ∧ 𝑢 = (0g𝐺)) → (∀𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)) ↔ ∀𝑥𝐵 ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺)))))
16 grpidinv.p . . . 4 + = (+g𝐺)
171, 16, 2grpidinv2 19015 . . 3 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
1817ralrimiva 3146 . 2 (𝐺 ∈ Grp → ∀𝑥𝐵 ((((0g𝐺) + 𝑥) = 𝑥 ∧ (𝑥 + (0g𝐺)) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = (0g𝐺) ∧ (𝑥 + 𝑦) = (0g𝐺))))
193, 15, 18rspcedvd 3624 1 (𝐺 ∈ Grp → ∃𝑢𝐵𝑥𝐵 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∃𝑦𝐵 ((𝑦 + 𝑥) = 𝑢 ∧ (𝑥 + 𝑦) = 𝑢)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-riota 7388  df-ov 7434  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator