MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvid Structured version   Visualization version   GIF version

Theorem grpinvid 18880
Description: The inverse of the identity element of a group. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinvid.u 0 = (0g𝐺)
grpinvid.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvid (𝐺 ∈ Grp → (𝑁0 ) = 0 )

Proof of Theorem grpinvid
StepHypRef Expression
1 eqid 2732 . . . 4 (Base‘𝐺) = (Base‘𝐺)
2 grpinvid.u . . . 4 0 = (0g𝐺)
31, 2grpidcl 18846 . . 3 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
4 eqid 2732 . . . 4 (+g𝐺) = (+g𝐺)
51, 4, 2grplid 18848 . . 3 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
63, 5mpdan 685 . 2 (𝐺 ∈ Grp → ( 0 (+g𝐺) 0 ) = 0 )
7 grpinvid.n . . . 4 𝑁 = (invg𝐺)
81, 4, 2, 7grpinvid1 18872 . . 3 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → ((𝑁0 ) = 0 ↔ ( 0 (+g𝐺) 0 ) = 0 ))
93, 3, 8mpd3an23 1463 . 2 (𝐺 ∈ Grp → ((𝑁0 ) = 0 ↔ ( 0 (+g𝐺) 0 ) = 0 ))
106, 9mpbird 256 1 (𝐺 ∈ Grp → (𝑁0 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  0gc0g 17381  Grpcgrp 18815  invgcminusg 18816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-riota 7361  df-ov 7408  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819
This theorem is referenced by:  grpinvnz  18890  grpsubid1  18904  mulgneg  18966  mulginvcom  18973  mulgz  18976  0subg  19025  0subgOLD  19026  eqgid  19054  odnncl  19407  gexdvds  19446  gsumzinv  19807  gsumsub  19810  dprdfinv  19883  dsmmsubg  21289  mplsubglem  21549  mhpinvcl  21686  dchrisum0re  27005  qusker  32452  qsnzr  32562  baerlem3lem1  40566
  Copyright terms: Public domain W3C validator