| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvid | Structured version Visualization version GIF version | ||
| Description: The inverse of the identity element of a group. (Contributed by NM, 24-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpinvid.u | ⊢ 0 = (0g‘𝐺) |
| grpinvid.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvid | ⊢ (𝐺 ∈ Grp → (𝑁‘ 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | grpinvid.u | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 3 | 1, 2 | grpidcl 18844 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺)) |
| 4 | eqid 2729 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 5 | 1, 4, 2 | grplid 18846 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 6 | 3, 5 | mpdan 687 | . 2 ⊢ (𝐺 ∈ Grp → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 7 | grpinvid.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 8 | 1, 4, 2, 7 | grpinvid1 18870 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → ((𝑁‘ 0 ) = 0 ↔ ( 0 (+g‘𝐺) 0 ) = 0 )) |
| 9 | 3, 3, 8 | mpd3an23 1465 | . 2 ⊢ (𝐺 ∈ Grp → ((𝑁‘ 0 ) = 0 ↔ ( 0 (+g‘𝐺) 0 ) = 0 )) |
| 10 | 6, 9 | mpbird 257 | 1 ⊢ (𝐺 ∈ Grp → (𝑁‘ 0 ) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Grpcgrp 18812 invgcminusg 18813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-riota 7306 df-ov 7352 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 |
| This theorem is referenced by: grpinvnz 18889 grpsubid1 18904 mulgneg 18971 mulginvcom 18978 mulgz 18981 0subg 19030 0subgOLD 19031 eqgid 19059 odnncl 19424 gexdvds 19463 gsumzinv 19824 gsumsub 19827 dprdfinv 19900 dsmmsubg 21650 mplsubglem 21906 mhpinvcl 22037 dchrisum0re 27422 erler 33206 qusker 33287 qsnzr 33393 baerlem3lem1 41696 primrootscoprbij 42085 |
| Copyright terms: Public domain | W3C validator |