| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvid | Structured version Visualization version GIF version | ||
| Description: The inverse of the identity element of a group. (Contributed by NM, 24-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpinvid.u | ⊢ 0 = (0g‘𝐺) |
| grpinvid.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvid | ⊢ (𝐺 ∈ Grp → (𝑁‘ 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | grpinvid.u | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 3 | 1, 2 | grpidcl 18897 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺)) |
| 4 | eqid 2729 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 5 | 1, 4, 2 | grplid 18899 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 6 | 3, 5 | mpdan 687 | . 2 ⊢ (𝐺 ∈ Grp → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 7 | grpinvid.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 8 | 1, 4, 2, 7 | grpinvid1 18923 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → ((𝑁‘ 0 ) = 0 ↔ ( 0 (+g‘𝐺) 0 ) = 0 )) |
| 9 | 3, 3, 8 | mpd3an23 1465 | . 2 ⊢ (𝐺 ∈ Grp → ((𝑁‘ 0 ) = 0 ↔ ( 0 (+g‘𝐺) 0 ) = 0 )) |
| 10 | 6, 9 | mpbird 257 | 1 ⊢ (𝐺 ∈ Grp → (𝑁‘ 0 ) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Grpcgrp 18865 invgcminusg 18866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-riota 7344 df-ov 7390 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 |
| This theorem is referenced by: grpinvnz 18942 grpsubid1 18957 mulgneg 19024 mulginvcom 19031 mulgz 19034 0subg 19083 0subgOLD 19084 eqgid 19112 odnncl 19475 gexdvds 19514 gsumzinv 19875 gsumsub 19878 dprdfinv 19951 dsmmsubg 21652 mplsubglem 21908 mhpinvcl 22039 dchrisum0re 27424 erler 33216 qusker 33320 qsnzr 33426 baerlem3lem1 41701 primrootscoprbij 42090 |
| Copyright terms: Public domain | W3C validator |