MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvid Structured version   Visualization version   GIF version

Theorem grpinvid 18912
Description: The inverse of the identity element of a group. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinvid.u 0 = (0g𝐺)
grpinvid.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvid (𝐺 ∈ Grp → (𝑁0 ) = 0 )

Proof of Theorem grpinvid
StepHypRef Expression
1 eqid 2731 . . . 4 (Base‘𝐺) = (Base‘𝐺)
2 grpinvid.u . . . 4 0 = (0g𝐺)
31, 2grpidcl 18878 . . 3 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
4 eqid 2731 . . . 4 (+g𝐺) = (+g𝐺)
51, 4, 2grplid 18880 . . 3 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
63, 5mpdan 687 . 2 (𝐺 ∈ Grp → ( 0 (+g𝐺) 0 ) = 0 )
7 grpinvid.n . . . 4 𝑁 = (invg𝐺)
81, 4, 2, 7grpinvid1 18904 . . 3 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → ((𝑁0 ) = 0 ↔ ( 0 (+g𝐺) 0 ) = 0 ))
93, 3, 8mpd3an23 1465 . 2 (𝐺 ∈ Grp → ((𝑁0 ) = 0 ↔ ( 0 (+g𝐺) 0 ) = 0 ))
106, 9mpbird 257 1 (𝐺 ∈ Grp → (𝑁0 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Grpcgrp 18846  invgcminusg 18847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850
This theorem is referenced by:  grpinvnz  18923  grpsubid1  18938  mulgneg  19005  mulginvcom  19012  mulgz  19015  0subg  19064  eqgid  19092  odnncl  19457  gexdvds  19496  gsumzinv  19857  gsumsub  19860  dprdfinv  19933  dsmmsubg  21680  mplsubglem  21936  mhpinvcl  22067  dchrisum0re  27451  erler  33232  qusker  33314  qsnzr  33420  baerlem3lem1  41805  primrootscoprbij  42194
  Copyright terms: Public domain W3C validator