MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvid Structured version   Visualization version   GIF version

Theorem grpinvid 18913
Description: The inverse of the identity element of a group. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinvid.u 0 = (0g𝐺)
grpinvid.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvid (𝐺 ∈ Grp → (𝑁0 ) = 0 )

Proof of Theorem grpinvid
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝐺) = (Base‘𝐺)
2 grpinvid.u . . . 4 0 = (0g𝐺)
31, 2grpidcl 18879 . . 3 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
4 eqid 2729 . . . 4 (+g𝐺) = (+g𝐺)
51, 4, 2grplid 18881 . . 3 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
63, 5mpdan 687 . 2 (𝐺 ∈ Grp → ( 0 (+g𝐺) 0 ) = 0 )
7 grpinvid.n . . . 4 𝑁 = (invg𝐺)
81, 4, 2, 7grpinvid1 18905 . . 3 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → ((𝑁0 ) = 0 ↔ ( 0 (+g𝐺) 0 ) = 0 ))
93, 3, 8mpd3an23 1465 . 2 (𝐺 ∈ Grp → ((𝑁0 ) = 0 ↔ ( 0 (+g𝐺) 0 ) = 0 ))
106, 9mpbird 257 1 (𝐺 ∈ Grp → (𝑁0 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  0gc0g 17378  Grpcgrp 18847  invgcminusg 18848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-riota 7326  df-ov 7372  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851
This theorem is referenced by:  grpinvnz  18924  grpsubid1  18939  mulgneg  19006  mulginvcom  19013  mulgz  19016  0subg  19065  0subgOLD  19066  eqgid  19094  odnncl  19459  gexdvds  19498  gsumzinv  19859  gsumsub  19862  dprdfinv  19935  dsmmsubg  21685  mplsubglem  21941  mhpinvcl  22072  dchrisum0re  27457  erler  33232  qusker  33313  qsnzr  33419  baerlem3lem1  41694  primrootscoprbij  42083
  Copyright terms: Public domain W3C validator