| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvid | Structured version Visualization version GIF version | ||
| Description: The inverse of the identity element of a group. (Contributed by NM, 24-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpinvid.u | ⊢ 0 = (0g‘𝐺) |
| grpinvid.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvid | ⊢ (𝐺 ∈ Grp → (𝑁‘ 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | grpinvid.u | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 3 | 1, 2 | grpidcl 18904 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺)) |
| 4 | eqid 2730 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 5 | 1, 4, 2 | grplid 18906 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 6 | 3, 5 | mpdan 687 | . 2 ⊢ (𝐺 ∈ Grp → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 7 | grpinvid.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 8 | 1, 4, 2, 7 | grpinvid1 18930 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → ((𝑁‘ 0 ) = 0 ↔ ( 0 (+g‘𝐺) 0 ) = 0 )) |
| 9 | 3, 3, 8 | mpd3an23 1465 | . 2 ⊢ (𝐺 ∈ Grp → ((𝑁‘ 0 ) = 0 ↔ ( 0 (+g‘𝐺) 0 ) = 0 )) |
| 10 | 6, 9 | mpbird 257 | 1 ⊢ (𝐺 ∈ Grp → (𝑁‘ 0 ) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Grpcgrp 18872 invgcminusg 18873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 |
| This theorem is referenced by: grpinvnz 18949 grpsubid1 18964 mulgneg 19031 mulginvcom 19038 mulgz 19041 0subg 19090 0subgOLD 19091 eqgid 19119 odnncl 19482 gexdvds 19521 gsumzinv 19882 gsumsub 19885 dprdfinv 19958 dsmmsubg 21659 mplsubglem 21915 mhpinvcl 22046 dchrisum0re 27431 erler 33223 qusker 33327 qsnzr 33433 baerlem3lem1 41708 primrootscoprbij 42097 |
| Copyright terms: Public domain | W3C validator |