| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvid | Structured version Visualization version GIF version | ||
| Description: The inverse of the identity element of a group. (Contributed by NM, 24-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpinvid.u | ⊢ 0 = (0g‘𝐺) |
| grpinvid.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvid | ⊢ (𝐺 ∈ Grp → (𝑁‘ 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | grpinvid.u | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 3 | 1, 2 | grpidcl 18953 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺)) |
| 4 | eqid 2736 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 5 | 1, 4, 2 | grplid 18955 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 6 | 3, 5 | mpdan 687 | . 2 ⊢ (𝐺 ∈ Grp → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 7 | grpinvid.n | . . . 4 ⊢ 𝑁 = (invg‘𝐺) | |
| 8 | 1, 4, 2, 7 | grpinvid1 18979 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → ((𝑁‘ 0 ) = 0 ↔ ( 0 (+g‘𝐺) 0 ) = 0 )) |
| 9 | 3, 3, 8 | mpd3an23 1465 | . 2 ⊢ (𝐺 ∈ Grp → ((𝑁‘ 0 ) = 0 ↔ ( 0 (+g‘𝐺) 0 ) = 0 )) |
| 10 | 6, 9 | mpbird 257 | 1 ⊢ (𝐺 ∈ Grp → (𝑁‘ 0 ) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 0gc0g 17458 Grpcgrp 18921 invgcminusg 18922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-riota 7367 df-ov 7413 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 |
| This theorem is referenced by: grpinvnz 18998 grpsubid1 19013 mulgneg 19080 mulginvcom 19087 mulgz 19090 0subg 19139 0subgOLD 19140 eqgid 19168 odnncl 19531 gexdvds 19570 gsumzinv 19931 gsumsub 19934 dprdfinv 20007 dsmmsubg 21708 mplsubglem 21964 mhpinvcl 22095 dchrisum0re 27481 erler 33265 qusker 33369 qsnzr 33475 baerlem3lem1 41731 primrootscoprbij 42120 |
| Copyright terms: Public domain | W3C validator |