MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvid Structured version   Visualization version   GIF version

Theorem grpinvid 18987
Description: The inverse of the identity element of a group. (Contributed by NM, 24-Aug-2011.)
Hypotheses
Ref Expression
grpinvid.u 0 = (0g𝐺)
grpinvid.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvid (𝐺 ∈ Grp → (𝑁0 ) = 0 )

Proof of Theorem grpinvid
StepHypRef Expression
1 eqid 2736 . . . 4 (Base‘𝐺) = (Base‘𝐺)
2 grpinvid.u . . . 4 0 = (0g𝐺)
31, 2grpidcl 18953 . . 3 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
4 eqid 2736 . . . 4 (+g𝐺) = (+g𝐺)
51, 4, 2grplid 18955 . . 3 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
63, 5mpdan 687 . 2 (𝐺 ∈ Grp → ( 0 (+g𝐺) 0 ) = 0 )
7 grpinvid.n . . . 4 𝑁 = (invg𝐺)
81, 4, 2, 7grpinvid1 18979 . . 3 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → ((𝑁0 ) = 0 ↔ ( 0 (+g𝐺) 0 ) = 0 ))
93, 3, 8mpd3an23 1465 . 2 (𝐺 ∈ Grp → ((𝑁0 ) = 0 ↔ ( 0 (+g𝐺) 0 ) = 0 ))
106, 9mpbird 257 1 (𝐺 ∈ Grp → (𝑁0 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  0gc0g 17458  Grpcgrp 18921  invgcminusg 18922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-riota 7367  df-ov 7413  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925
This theorem is referenced by:  grpinvnz  18998  grpsubid1  19013  mulgneg  19080  mulginvcom  19087  mulgz  19090  0subg  19139  0subgOLD  19140  eqgid  19168  odnncl  19531  gexdvds  19570  gsumzinv  19931  gsumsub  19934  dprdfinv  20007  dsmmsubg  21708  mplsubglem  21964  mhpinvcl  22095  dchrisum0re  27481  erler  33265  qusker  33369  qsnzr  33475  baerlem3lem1  41731  primrootscoprbij  42120
  Copyright terms: Public domain W3C validator