| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpidinv2 | Structured version Visualization version GIF version | ||
| Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by AV, 1-Sep-2021.) |
| Ref | Expression |
|---|---|
| grplrinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplrinv.p | ⊢ + = (+g‘𝐺) |
| grplrinv.i | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpidinv2 | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ((( 0 + 𝐴) = 𝐴 ∧ (𝐴 + 0 ) = 𝐴) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplrinv.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grplrinv.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | grplrinv.i | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | grplid 18959 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ( 0 + 𝐴) = 𝐴) |
| 5 | 1, 2, 3 | grprid 18960 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → (𝐴 + 0 ) = 𝐴) |
| 6 | 1, 2, 3 | grplrinv 18988 | . . 3 ⊢ (𝐺 ∈ Grp → ∀𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 )) |
| 7 | oveq2 7422 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → (𝑦 + 𝑧) = (𝑦 + 𝐴)) | |
| 8 | 7 | eqeq1d 2736 | . . . . . 6 ⊢ (𝑧 = 𝐴 → ((𝑦 + 𝑧) = 0 ↔ (𝑦 + 𝐴) = 0 )) |
| 9 | oveq1 7421 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → (𝑧 + 𝑦) = (𝐴 + 𝑦)) | |
| 10 | 9 | eqeq1d 2736 | . . . . . 6 ⊢ (𝑧 = 𝐴 → ((𝑧 + 𝑦) = 0 ↔ (𝐴 + 𝑦) = 0 )) |
| 11 | 8, 10 | anbi12d 632 | . . . . 5 ⊢ (𝑧 = 𝐴 → (((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) ↔ ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
| 12 | 11 | rexbidv 3166 | . . . 4 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) ↔ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
| 13 | 12 | rspcv 3602 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
| 14 | 6, 13 | mpan9 506 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 )) |
| 15 | 4, 5, 14 | jca31 514 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ((( 0 + 𝐴) = 𝐴 ∧ (𝐴 + 0 ) = 𝐴) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 +gcplusg 17277 0gc0g 17460 Grpcgrp 18925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-riota 7371 df-ov 7417 df-0g 17462 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-grp 18928 df-minusg 18929 |
| This theorem is referenced by: grpidinv 18990 |
| Copyright terms: Public domain | W3C validator |