![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpidinv2 | Structured version Visualization version GIF version |
Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by AV, 1-Sep-2021.) |
Ref | Expression |
---|---|
grplrinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grplrinv.p | ⊢ + = (+g‘𝐺) |
grplrinv.i | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpidinv2 | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ((( 0 + 𝐴) = 𝐴 ∧ (𝐴 + 0 ) = 𝐴) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grplrinv.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grplrinv.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | grplrinv.i | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | 1, 2, 3 | grplid 17660 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ( 0 + 𝐴) = 𝐴) |
5 | 1, 2, 3 | grprid 17661 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → (𝐴 + 0 ) = 𝐴) |
6 | 1, 2, 3 | grplrinv 17681 | . . 3 ⊢ (𝐺 ∈ Grp → ∀𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 )) |
7 | oveq2 6804 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → (𝑦 + 𝑧) = (𝑦 + 𝐴)) | |
8 | 7 | eqeq1d 2773 | . . . . . 6 ⊢ (𝑧 = 𝐴 → ((𝑦 + 𝑧) = 0 ↔ (𝑦 + 𝐴) = 0 )) |
9 | oveq1 6803 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → (𝑧 + 𝑦) = (𝐴 + 𝑦)) | |
10 | 9 | eqeq1d 2773 | . . . . . 6 ⊢ (𝑧 = 𝐴 → ((𝑧 + 𝑦) = 0 ↔ (𝐴 + 𝑦) = 0 )) |
11 | 8, 10 | anbi12d 616 | . . . . 5 ⊢ (𝑧 = 𝐴 → (((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) ↔ ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
12 | 11 | rexbidv 3200 | . . . 4 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) ↔ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
13 | 12 | rspcv 3456 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
14 | 6, 13 | mpan9 496 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 )) |
15 | 4, 5, 14 | jca31 504 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ((( 0 + 𝐴) = 𝐴 ∧ (𝐴 + 0 ) = 𝐴) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ∃wrex 3062 ‘cfv 6030 (class class class)co 6796 Basecbs 16064 +gcplusg 16149 0gc0g 16308 Grpcgrp 17630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-minusg 17634 |
This theorem is referenced by: grpidinv 17683 |
Copyright terms: Public domain | W3C validator |