| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpidinv2 | Structured version Visualization version GIF version | ||
| Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by AV, 1-Sep-2021.) |
| Ref | Expression |
|---|---|
| grplrinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grplrinv.p | ⊢ + = (+g‘𝐺) |
| grplrinv.i | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| grpidinv2 | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ((( 0 + 𝐴) = 𝐴 ∧ (𝐴 + 0 ) = 𝐴) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplrinv.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grplrinv.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 3 | grplrinv.i | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 4 | 1, 2, 3 | grplid 18882 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ( 0 + 𝐴) = 𝐴) |
| 5 | 1, 2, 3 | grprid 18883 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → (𝐴 + 0 ) = 𝐴) |
| 6 | 1, 2, 3 | grplrinv 18911 | . . 3 ⊢ (𝐺 ∈ Grp → ∀𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 )) |
| 7 | oveq2 7360 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → (𝑦 + 𝑧) = (𝑦 + 𝐴)) | |
| 8 | 7 | eqeq1d 2735 | . . . . . 6 ⊢ (𝑧 = 𝐴 → ((𝑦 + 𝑧) = 0 ↔ (𝑦 + 𝐴) = 0 )) |
| 9 | oveq1 7359 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → (𝑧 + 𝑦) = (𝐴 + 𝑦)) | |
| 10 | 9 | eqeq1d 2735 | . . . . . 6 ⊢ (𝑧 = 𝐴 → ((𝑧 + 𝑦) = 0 ↔ (𝐴 + 𝑦) = 0 )) |
| 11 | 8, 10 | anbi12d 632 | . . . . 5 ⊢ (𝑧 = 𝐴 → (((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) ↔ ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
| 12 | 11 | rexbidv 3157 | . . . 4 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) ↔ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
| 13 | 12 | rspcv 3569 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
| 14 | 6, 13 | mpan9 506 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 )) |
| 15 | 4, 5, 14 | jca31 514 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ((( 0 + 𝐴) = 𝐴 ∧ (𝐴 + 0 ) = 𝐴) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 0gc0g 17345 Grpcgrp 18848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-riota 7309 df-ov 7355 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 |
| This theorem is referenced by: grpidinv 18913 |
| Copyright terms: Public domain | W3C validator |