MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidinv2 Structured version   Visualization version   GIF version

Theorem grpidinv2 18958
Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grplrinv.b 𝐵 = (Base‘𝐺)
grplrinv.p + = (+g𝐺)
grplrinv.i 0 = (0g𝐺)
Assertion
Ref Expression
grpidinv2 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → ((( 0 + 𝐴) = 𝐴 ∧ (𝐴 + 0 ) = 𝐴) ∧ ∃𝑦𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 )))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦, +   𝑦, 0   𝑦,𝐴

Proof of Theorem grpidinv2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 grplrinv.b . . 3 𝐵 = (Base‘𝐺)
2 grplrinv.p . . 3 + = (+g𝐺)
3 grplrinv.i . . 3 0 = (0g𝐺)
41, 2, 3grplid 18928 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → ( 0 + 𝐴) = 𝐴)
51, 2, 3grprid 18929 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → (𝐴 + 0 ) = 𝐴)
61, 2, 3grplrinv 18957 . . 3 (𝐺 ∈ Grp → ∀𝑧𝐵𝑦𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ))
7 oveq2 7424 . . . . . . 7 (𝑧 = 𝐴 → (𝑦 + 𝑧) = (𝑦 + 𝐴))
87eqeq1d 2727 . . . . . 6 (𝑧 = 𝐴 → ((𝑦 + 𝑧) = 0 ↔ (𝑦 + 𝐴) = 0 ))
9 oveq1 7423 . . . . . . 7 (𝑧 = 𝐴 → (𝑧 + 𝑦) = (𝐴 + 𝑦))
109eqeq1d 2727 . . . . . 6 (𝑧 = 𝐴 → ((𝑧 + 𝑦) = 0 ↔ (𝐴 + 𝑦) = 0 ))
118, 10anbi12d 630 . . . . 5 (𝑧 = 𝐴 → (((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) ↔ ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 )))
1211rexbidv 3169 . . . 4 (𝑧 = 𝐴 → (∃𝑦𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) ↔ ∃𝑦𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 )))
1312rspcv 3597 . . 3 (𝐴𝐵 → (∀𝑧𝐵𝑦𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) → ∃𝑦𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 )))
146, 13mpan9 505 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → ∃𝑦𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))
154, 5, 14jca31 513 1 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → ((( 0 + 𝐴) = 𝐴 ∧ (𝐴 + 0 ) = 𝐴) ∧ ∃𝑦𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3051  wrex 3060  cfv 6543  (class class class)co 7416  Basecbs 17179  +gcplusg 17232  0gc0g 17420  Grpcgrp 18894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-riota 7372  df-ov 7419  df-0g 17422  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-grp 18897  df-minusg 18898
This theorem is referenced by:  grpidinv  18959
  Copyright terms: Public domain W3C validator