![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpidinv2 | Structured version Visualization version GIF version |
Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by AV, 1-Sep-2021.) |
Ref | Expression |
---|---|
grplrinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grplrinv.p | ⊢ + = (+g‘𝐺) |
grplrinv.i | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
grpidinv2 | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ((( 0 + 𝐴) = 𝐴 ∧ (𝐴 + 0 ) = 𝐴) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grplrinv.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grplrinv.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | grplrinv.i | . . 3 ⊢ 0 = (0g‘𝐺) | |
4 | 1, 2, 3 | grplid 18897 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ( 0 + 𝐴) = 𝐴) |
5 | 1, 2, 3 | grprid 18898 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → (𝐴 + 0 ) = 𝐴) |
6 | 1, 2, 3 | grplrinv 18926 | . . 3 ⊢ (𝐺 ∈ Grp → ∀𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 )) |
7 | oveq2 7413 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → (𝑦 + 𝑧) = (𝑦 + 𝐴)) | |
8 | 7 | eqeq1d 2728 | . . . . . 6 ⊢ (𝑧 = 𝐴 → ((𝑦 + 𝑧) = 0 ↔ (𝑦 + 𝐴) = 0 )) |
9 | oveq1 7412 | . . . . . . 7 ⊢ (𝑧 = 𝐴 → (𝑧 + 𝑦) = (𝐴 + 𝑦)) | |
10 | 9 | eqeq1d 2728 | . . . . . 6 ⊢ (𝑧 = 𝐴 → ((𝑧 + 𝑦) = 0 ↔ (𝐴 + 𝑦) = 0 )) |
11 | 8, 10 | anbi12d 630 | . . . . 5 ⊢ (𝑧 = 𝐴 → (((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) ↔ ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
12 | 11 | rexbidv 3172 | . . . 4 ⊢ (𝑧 = 𝐴 → (∃𝑦 ∈ 𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) ↔ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
13 | 12 | rspcv 3602 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑧 ∈ 𝐵 ∃𝑦 ∈ 𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
14 | 6, 13 | mpan9 506 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 )) |
15 | 4, 5, 14 | jca31 514 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → ((( 0 + 𝐴) = 𝐴 ∧ (𝐴 + 0 ) = 𝐴) ∧ ∃𝑦 ∈ 𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 ‘cfv 6537 (class class class)co 7405 Basecbs 17153 +gcplusg 17206 0gc0g 17394 Grpcgrp 18863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-fv 6545 df-riota 7361 df-ov 7408 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-minusg 18867 |
This theorem is referenced by: grpidinv 18928 |
Copyright terms: Public domain | W3C validator |