MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpidinv2 Structured version   Visualization version   GIF version

Theorem grpidinv2 18894
Description: A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by AV, 1-Sep-2021.)
Hypotheses
Ref Expression
grplrinv.b 𝐵 = (Base‘𝐺)
grplrinv.p + = (+g𝐺)
grplrinv.i 0 = (0g𝐺)
Assertion
Ref Expression
grpidinv2 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → ((( 0 + 𝐴) = 𝐴 ∧ (𝐴 + 0 ) = 𝐴) ∧ ∃𝑦𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 )))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐺   𝑦, +   𝑦, 0   𝑦,𝐴

Proof of Theorem grpidinv2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 grplrinv.b . . 3 𝐵 = (Base‘𝐺)
2 grplrinv.p . . 3 + = (+g𝐺)
3 grplrinv.i . . 3 0 = (0g𝐺)
41, 2, 3grplid 18864 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → ( 0 + 𝐴) = 𝐴)
51, 2, 3grprid 18865 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → (𝐴 + 0 ) = 𝐴)
61, 2, 3grplrinv 18893 . . 3 (𝐺 ∈ Grp → ∀𝑧𝐵𝑦𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ))
7 oveq2 7361 . . . . . . 7 (𝑧 = 𝐴 → (𝑦 + 𝑧) = (𝑦 + 𝐴))
87eqeq1d 2731 . . . . . 6 (𝑧 = 𝐴 → ((𝑦 + 𝑧) = 0 ↔ (𝑦 + 𝐴) = 0 ))
9 oveq1 7360 . . . . . . 7 (𝑧 = 𝐴 → (𝑧 + 𝑦) = (𝐴 + 𝑦))
109eqeq1d 2731 . . . . . 6 (𝑧 = 𝐴 → ((𝑧 + 𝑦) = 0 ↔ (𝐴 + 𝑦) = 0 ))
118, 10anbi12d 632 . . . . 5 (𝑧 = 𝐴 → (((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) ↔ ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 )))
1211rexbidv 3153 . . . 4 (𝑧 = 𝐴 → (∃𝑦𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) ↔ ∃𝑦𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 )))
1312rspcv 3575 . . 3 (𝐴𝐵 → (∀𝑧𝐵𝑦𝐵 ((𝑦 + 𝑧) = 0 ∧ (𝑧 + 𝑦) = 0 ) → ∃𝑦𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 )))
146, 13mpan9 506 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → ∃𝑦𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 ))
154, 5, 14jca31 514 1 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → ((( 0 + 𝐴) = 𝐴 ∧ (𝐴 + 0 ) = 𝐴) ∧ ∃𝑦𝐵 ((𝑦 + 𝐴) = 0 ∧ (𝐴 + 𝑦) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  0gc0g 17361  Grpcgrp 18830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-riota 7310  df-ov 7356  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834
This theorem is referenced by:  grpidinv  18895
  Copyright terms: Public domain W3C validator