![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinvfn | Structured version Visualization version GIF version |
Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
grpinvfn.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvfn.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvfn | ⊢ 𝑁 Fn 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaex 6843 | . 2 ⊢ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V | |
2 | grpinvfn.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2799 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | eqid 2799 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
5 | grpinvfn.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
6 | 2, 3, 4, 5 | grpinvfval 17776 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
7 | 1, 6 | fnmpti 6233 | 1 ⊢ 𝑁 Fn 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 Fn wfn 6096 ‘cfv 6101 ℩crio 6838 (class class class)co 6878 Basecbs 16184 +gcplusg 16267 0gc0g 16415 invgcminusg 17739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-minusg 17742 |
This theorem is referenced by: grpinvfvi 17779 isgrpinv 17788 invrfval 18989 |
Copyright terms: Public domain | W3C validator |