MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvfn Structured version   Visualization version   GIF version

Theorem grpinvfn 19021
Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
grpinvfn.b 𝐵 = (Base‘𝐺)
grpinvfn.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvfn 𝑁 Fn 𝐵

Proof of Theorem grpinvfn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 7408 . 2 (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ V
2 grpinvfn.b . . 3 𝐵 = (Base‘𝐺)
3 eqid 2740 . . 3 (+g𝐺) = (+g𝐺)
4 eqid 2740 . . 3 (0g𝐺) = (0g𝐺)
5 grpinvfn.n . . 3 𝑁 = (invg𝐺)
62, 3, 4, 5grpinvfval 19018 . 2 𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)))
71, 6fnmpti 6723 1 𝑁 Fn 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537   Fn wfn 6568  cfv 6573  crio 7403  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  invgcminusg 18974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-riota 7404  df-ov 7451  df-minusg 18977
This theorem is referenced by:  grpinvfvi  19022  isgrpinv  19033  invrfval  20415  mplsubglem  22042  mhpinvcl  22179
  Copyright terms: Public domain W3C validator