MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvfn Structured version   Visualization version   GIF version

Theorem grpinvfn 18896
Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
grpinvfn.b 𝐵 = (Base‘𝐺)
grpinvfn.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvfn 𝑁 Fn 𝐵

Proof of Theorem grpinvfn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 7313 . 2 (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ V
2 grpinvfn.b . . 3 𝐵 = (Base‘𝐺)
3 eqid 2733 . . 3 (+g𝐺) = (+g𝐺)
4 eqid 2733 . . 3 (0g𝐺) = (0g𝐺)
5 grpinvfn.n . . 3 𝑁 = (invg𝐺)
62, 3, 4, 5grpinvfval 18893 . 2 𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)))
71, 6fnmpti 6629 1 𝑁 Fn 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   Fn wfn 6481  cfv 6486  crio 7308  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  0gc0g 17345  invgcminusg 18849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-riota 7309  df-ov 7355  df-minusg 18852
This theorem is referenced by:  grpinvfvi  18897  isgrpinv  18908  invrfval  20309  mplsubglem  21937  mhpinvcl  22068
  Copyright terms: Public domain W3C validator