| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvfn | Structured version Visualization version GIF version | ||
| Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| grpinvfn.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvfn.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvfn | ⊢ 𝑁 Fn 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaex 7350 | . 2 ⊢ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V | |
| 2 | grpinvfn.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2730 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | eqid 2730 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 5 | grpinvfn.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 6 | 2, 3, 4, 5 | grpinvfval 18916 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
| 7 | 1, 6 | fnmpti 6663 | 1 ⊢ 𝑁 Fn 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 Fn wfn 6508 ‘cfv 6513 ℩crio 7345 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 0gc0g 17408 invgcminusg 18872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-riota 7346 df-ov 7392 df-minusg 18875 |
| This theorem is referenced by: grpinvfvi 18920 isgrpinv 18931 invrfval 20304 mplsubglem 21914 mhpinvcl 22045 |
| Copyright terms: Public domain | W3C validator |