| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvfn | Structured version Visualization version GIF version | ||
| Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| grpinvfn.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvfn.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvfn | ⊢ 𝑁 Fn 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaex 7307 | . 2 ⊢ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V | |
| 2 | grpinvfn.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2731 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | eqid 2731 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 5 | grpinvfn.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 6 | 2, 3, 4, 5 | grpinvfval 18888 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
| 7 | 1, 6 | fnmpti 6624 | 1 ⊢ 𝑁 Fn 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Fn wfn 6476 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 0gc0g 17340 invgcminusg 18844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-riota 7303 df-ov 7349 df-minusg 18847 |
| This theorem is referenced by: grpinvfvi 18892 isgrpinv 18903 invrfval 20305 mplsubglem 21934 mhpinvcl 22065 |
| Copyright terms: Public domain | W3C validator |