Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpinvfn | Structured version Visualization version GIF version |
Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
grpinvfn.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvfn.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvfn | ⊢ 𝑁 Fn 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaex 7236 | . 2 ⊢ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V | |
2 | grpinvfn.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2738 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | eqid 2738 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
5 | grpinvfn.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
6 | 2, 3, 4, 5 | grpinvfval 18618 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
7 | 1, 6 | fnmpti 6576 | 1 ⊢ 𝑁 Fn 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 Fn wfn 6428 ‘cfv 6433 ℩crio 7231 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 0gc0g 17150 invgcminusg 18578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-riota 7232 df-ov 7278 df-minusg 18581 |
This theorem is referenced by: grpinvfvi 18622 isgrpinv 18632 invrfval 19915 mplsubglem 21205 mhpinvcl 21342 |
Copyright terms: Public domain | W3C validator |