![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinvfn | Structured version Visualization version GIF version |
Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
grpinvfn.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinvfn.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvfn | ⊢ 𝑁 Fn 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaex 7392 | . 2 ⊢ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺)) ∈ V | |
2 | grpinvfn.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2735 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | eqid 2735 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
5 | grpinvfn.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
6 | 2, 3, 4, 5 | grpinvfval 19009 | . 2 ⊢ 𝑁 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 (𝑦(+g‘𝐺)𝑥) = (0g‘𝐺))) |
7 | 1, 6 | fnmpti 6712 | 1 ⊢ 𝑁 Fn 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Fn wfn 6558 ‘cfv 6563 ℩crio 7387 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 0gc0g 17486 invgcminusg 18965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-riota 7388 df-ov 7434 df-minusg 18968 |
This theorem is referenced by: grpinvfvi 19013 isgrpinv 19024 invrfval 20406 mplsubglem 22037 mhpinvcl 22174 |
Copyright terms: Public domain | W3C validator |