MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvfn Structured version   Visualization version   GIF version

Theorem grpinvfn 18913
Description: Functionality of the group inverse function. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
grpinvfn.b 𝐵 = (Base‘𝐺)
grpinvfn.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvfn 𝑁 Fn 𝐵

Proof of Theorem grpinvfn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 7348 . 2 (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)) ∈ V
2 grpinvfn.b . . 3 𝐵 = (Base‘𝐺)
3 eqid 2729 . . 3 (+g𝐺) = (+g𝐺)
4 eqid 2729 . . 3 (0g𝐺) = (0g𝐺)
5 grpinvfn.n . . 3 𝑁 = (invg𝐺)
62, 3, 4, 5grpinvfval 18910 . 2 𝑁 = (𝑥𝐵 ↦ (𝑦𝐵 (𝑦(+g𝐺)𝑥) = (0g𝐺)))
71, 6fnmpti 6661 1 𝑁 Fn 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   Fn wfn 6506  cfv 6511  crio 7343  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  0gc0g 17402  invgcminusg 18866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-riota 7344  df-ov 7390  df-minusg 18869
This theorem is referenced by:  grpinvfvi  18914  isgrpinv  18925  invrfval  20298  mplsubglem  21908  mhpinvcl  22039
  Copyright terms: Public domain W3C validator