| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvfvi | Structured version Visualization version GIF version | ||
| Description: The group inverse function is compatible with identity-function protection. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| grpinvfvi.t | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvfvi | ⊢ 𝑁 = (invg‘( I ‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvfvi.t | . 2 ⊢ 𝑁 = (invg‘𝐺) | |
| 2 | fvi 6940 | . . . 4 ⊢ (𝐺 ∈ V → ( I ‘𝐺) = 𝐺) | |
| 3 | 2 | fveq2d 6865 | . . 3 ⊢ (𝐺 ∈ V → (invg‘( I ‘𝐺)) = (invg‘𝐺)) |
| 4 | base0 17191 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
| 5 | eqid 2730 | . . . . . 6 ⊢ (invg‘∅) = (invg‘∅) | |
| 6 | 4, 5 | grpinvfn 18920 | . . . . 5 ⊢ (invg‘∅) Fn ∅ |
| 7 | fn0 6652 | . . . . 5 ⊢ ((invg‘∅) Fn ∅ ↔ (invg‘∅) = ∅) | |
| 8 | 6, 7 | mpbi 230 | . . . 4 ⊢ (invg‘∅) = ∅ |
| 9 | fvprc 6853 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → ( I ‘𝐺) = ∅) | |
| 10 | 9 | fveq2d 6865 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (invg‘( I ‘𝐺)) = (invg‘∅)) |
| 11 | fvprc 6853 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (invg‘𝐺) = ∅) | |
| 12 | 8, 10, 11 | 3eqtr4a 2791 | . . 3 ⊢ (¬ 𝐺 ∈ V → (invg‘( I ‘𝐺)) = (invg‘𝐺)) |
| 13 | 3, 12 | pm2.61i 182 | . 2 ⊢ (invg‘( I ‘𝐺)) = (invg‘𝐺) |
| 14 | 1, 13 | eqtr4i 2756 | 1 ⊢ 𝑁 = (invg‘( I ‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 I cid 5535 Fn wfn 6509 ‘cfv 6514 invgcminusg 18873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-slot 17159 df-ndx 17171 df-base 17187 df-minusg 18876 |
| This theorem is referenced by: deg1invg 26018 |
| Copyright terms: Public domain | W3C validator |