| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvfvi | Structured version Visualization version GIF version | ||
| Description: The group inverse function is compatible with identity-function protection. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| grpinvfvi.t | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvfvi | ⊢ 𝑁 = (invg‘( I ‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvfvi.t | . 2 ⊢ 𝑁 = (invg‘𝐺) | |
| 2 | fvi 6903 | . . . 4 ⊢ (𝐺 ∈ V → ( I ‘𝐺) = 𝐺) | |
| 3 | 2 | fveq2d 6830 | . . 3 ⊢ (𝐺 ∈ V → (invg‘( I ‘𝐺)) = (invg‘𝐺)) |
| 4 | base0 17143 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
| 5 | eqid 2729 | . . . . . 6 ⊢ (invg‘∅) = (invg‘∅) | |
| 6 | 4, 5 | grpinvfn 18878 | . . . . 5 ⊢ (invg‘∅) Fn ∅ |
| 7 | fn0 6617 | . . . . 5 ⊢ ((invg‘∅) Fn ∅ ↔ (invg‘∅) = ∅) | |
| 8 | 6, 7 | mpbi 230 | . . . 4 ⊢ (invg‘∅) = ∅ |
| 9 | fvprc 6818 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → ( I ‘𝐺) = ∅) | |
| 10 | 9 | fveq2d 6830 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (invg‘( I ‘𝐺)) = (invg‘∅)) |
| 11 | fvprc 6818 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (invg‘𝐺) = ∅) | |
| 12 | 8, 10, 11 | 3eqtr4a 2790 | . . 3 ⊢ (¬ 𝐺 ∈ V → (invg‘( I ‘𝐺)) = (invg‘𝐺)) |
| 13 | 3, 12 | pm2.61i 182 | . 2 ⊢ (invg‘( I ‘𝐺)) = (invg‘𝐺) |
| 14 | 1, 13 | eqtr4i 2755 | 1 ⊢ 𝑁 = (invg‘( I ‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 I cid 5517 Fn wfn 6481 ‘cfv 6486 invgcminusg 18831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-slot 17111 df-ndx 17123 df-base 17139 df-minusg 18834 |
| This theorem is referenced by: deg1invg 26027 |
| Copyright terms: Public domain | W3C validator |