![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpinvfvi | Structured version Visualization version GIF version |
Description: The group inverse function is compatible with identity-function protection. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
grpinvfvi.t | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpinvfvi | ⊢ 𝑁 = (invg‘( I ‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvfvi.t | . 2 ⊢ 𝑁 = (invg‘𝐺) | |
2 | fvi 6963 | . . . 4 ⊢ (𝐺 ∈ V → ( I ‘𝐺) = 𝐺) | |
3 | 2 | fveq2d 6892 | . . 3 ⊢ (𝐺 ∈ V → (invg‘( I ‘𝐺)) = (invg‘𝐺)) |
4 | base0 17145 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
5 | eqid 2733 | . . . . . 6 ⊢ (invg‘∅) = (invg‘∅) | |
6 | 4, 5 | grpinvfn 18862 | . . . . 5 ⊢ (invg‘∅) Fn ∅ |
7 | fn0 6678 | . . . . 5 ⊢ ((invg‘∅) Fn ∅ ↔ (invg‘∅) = ∅) | |
8 | 6, 7 | mpbi 229 | . . . 4 ⊢ (invg‘∅) = ∅ |
9 | fvprc 6880 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → ( I ‘𝐺) = ∅) | |
10 | 9 | fveq2d 6892 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (invg‘( I ‘𝐺)) = (invg‘∅)) |
11 | fvprc 6880 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (invg‘𝐺) = ∅) | |
12 | 8, 10, 11 | 3eqtr4a 2799 | . . 3 ⊢ (¬ 𝐺 ∈ V → (invg‘( I ‘𝐺)) = (invg‘𝐺)) |
13 | 3, 12 | pm2.61i 182 | . 2 ⊢ (invg‘( I ‘𝐺)) = (invg‘𝐺) |
14 | 1, 13 | eqtr4i 2764 | 1 ⊢ 𝑁 = (invg‘( I ‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4321 I cid 5572 Fn wfn 6535 ‘cfv 6540 invgcminusg 18816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-1cn 11164 ax-addcl 11166 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-om 7851 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-nn 12209 df-slot 17111 df-ndx 17123 df-base 17141 df-minusg 18819 |
This theorem is referenced by: deg1invg 25606 |
Copyright terms: Public domain | W3C validator |