| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvfvi | Structured version Visualization version GIF version | ||
| Description: The group inverse function is compatible with identity-function protection. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| grpinvfvi.t | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grpinvfvi | ⊢ 𝑁 = (invg‘( I ‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvfvi.t | . 2 ⊢ 𝑁 = (invg‘𝐺) | |
| 2 | fvi 6898 | . . . 4 ⊢ (𝐺 ∈ V → ( I ‘𝐺) = 𝐺) | |
| 3 | 2 | fveq2d 6826 | . . 3 ⊢ (𝐺 ∈ V → (invg‘( I ‘𝐺)) = (invg‘𝐺)) |
| 4 | base0 17122 | . . . . . 6 ⊢ ∅ = (Base‘∅) | |
| 5 | eqid 2731 | . . . . . 6 ⊢ (invg‘∅) = (invg‘∅) | |
| 6 | 4, 5 | grpinvfn 18891 | . . . . 5 ⊢ (invg‘∅) Fn ∅ |
| 7 | fn0 6612 | . . . . 5 ⊢ ((invg‘∅) Fn ∅ ↔ (invg‘∅) = ∅) | |
| 8 | 6, 7 | mpbi 230 | . . . 4 ⊢ (invg‘∅) = ∅ |
| 9 | fvprc 6814 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → ( I ‘𝐺) = ∅) | |
| 10 | 9 | fveq2d 6826 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (invg‘( I ‘𝐺)) = (invg‘∅)) |
| 11 | fvprc 6814 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (invg‘𝐺) = ∅) | |
| 12 | 8, 10, 11 | 3eqtr4a 2792 | . . 3 ⊢ (¬ 𝐺 ∈ V → (invg‘( I ‘𝐺)) = (invg‘𝐺)) |
| 13 | 3, 12 | pm2.61i 182 | . 2 ⊢ (invg‘( I ‘𝐺)) = (invg‘𝐺) |
| 14 | 1, 13 | eqtr4i 2757 | 1 ⊢ 𝑁 = (invg‘( I ‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 I cid 5510 Fn wfn 6476 ‘cfv 6481 invgcminusg 18844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 df-slot 17090 df-ndx 17102 df-base 17118 df-minusg 18847 |
| This theorem is referenced by: deg1invg 26036 |
| Copyright terms: Public domain | W3C validator |