MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvfvi Structured version   Visualization version   GIF version

Theorem grpinvfvi 18921
Description: The group inverse function is compatible with identity-function protection. (Contributed by Stefan O'Rear, 21-Mar-2015.)
Hypothesis
Ref Expression
grpinvfvi.t 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvfvi 𝑁 = (invg‘( I ‘𝐺))

Proof of Theorem grpinvfvi
StepHypRef Expression
1 grpinvfvi.t . 2 𝑁 = (invg𝐺)
2 fvi 6940 . . . 4 (𝐺 ∈ V → ( I ‘𝐺) = 𝐺)
32fveq2d 6865 . . 3 (𝐺 ∈ V → (invg‘( I ‘𝐺)) = (invg𝐺))
4 base0 17191 . . . . . 6 ∅ = (Base‘∅)
5 eqid 2730 . . . . . 6 (invg‘∅) = (invg‘∅)
64, 5grpinvfn 18920 . . . . 5 (invg‘∅) Fn ∅
7 fn0 6652 . . . . 5 ((invg‘∅) Fn ∅ ↔ (invg‘∅) = ∅)
86, 7mpbi 230 . . . 4 (invg‘∅) = ∅
9 fvprc 6853 . . . . 5 𝐺 ∈ V → ( I ‘𝐺) = ∅)
109fveq2d 6865 . . . 4 𝐺 ∈ V → (invg‘( I ‘𝐺)) = (invg‘∅))
11 fvprc 6853 . . . 4 𝐺 ∈ V → (invg𝐺) = ∅)
128, 10, 113eqtr4a 2791 . . 3 𝐺 ∈ V → (invg‘( I ‘𝐺)) = (invg𝐺))
133, 12pm2.61i 182 . 2 (invg‘( I ‘𝐺)) = (invg𝐺)
141, 13eqtr4i 2756 1 𝑁 = (invg‘( I ‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299   I cid 5535   Fn wfn 6509  cfv 6514  invgcminusg 18873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-slot 17159  df-ndx 17171  df-base 17187  df-minusg 18876
This theorem is referenced by:  deg1invg  26018
  Copyright terms: Public domain W3C validator