MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpinv Structured version   Visualization version   GIF version

Theorem isgrpinv 19023
Description: Properties showing that a function 𝑀 is the inverse function of a group. (Contributed by NM, 7-Aug-2013.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grpinv.b 𝐵 = (Base‘𝐺)
grpinv.p + = (+g𝐺)
grpinv.u 0 = (0g𝐺)
grpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
isgrpinv (𝐺 ∈ Grp → ((𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 ) ↔ 𝑁 = 𝑀))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥, 0   𝑥, +   𝑥,𝑀   𝑥,𝑁

Proof of Theorem isgrpinv
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
2 grpinv.p . . . . . . . . . 10 + = (+g𝐺)
3 grpinv.u . . . . . . . . . 10 0 = (0g𝐺)
4 grpinv.n . . . . . . . . . 10 𝑁 = (invg𝐺)
51, 2, 3, 4grpinvval 19010 . . . . . . . . 9 (𝑥𝐵 → (𝑁𝑥) = (𝑒𝐵 (𝑒 + 𝑥) = 0 ))
65ad2antlr 727 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (𝑁𝑥) = (𝑒𝐵 (𝑒 + 𝑥) = 0 ))
7 simpr 484 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → ((𝑀𝑥) + 𝑥) = 0 )
8 simpllr 776 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → 𝑀:𝐵𝐵)
9 simplr 769 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → 𝑥𝐵)
108, 9ffvelcdmd 7104 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (𝑀𝑥) ∈ 𝐵)
111, 2, 3grpinveu 19004 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ∃!𝑒𝐵 (𝑒 + 𝑥) = 0 )
1211ad4ant13 751 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → ∃!𝑒𝐵 (𝑒 + 𝑥) = 0 )
13 oveq1 7437 . . . . . . . . . . . 12 (𝑒 = (𝑀𝑥) → (𝑒 + 𝑥) = ((𝑀𝑥) + 𝑥))
1413eqeq1d 2736 . . . . . . . . . . 11 (𝑒 = (𝑀𝑥) → ((𝑒 + 𝑥) = 0 ↔ ((𝑀𝑥) + 𝑥) = 0 ))
1514riota2 7412 . . . . . . . . . 10 (((𝑀𝑥) ∈ 𝐵 ∧ ∃!𝑒𝐵 (𝑒 + 𝑥) = 0 ) → (((𝑀𝑥) + 𝑥) = 0 ↔ (𝑒𝐵 (𝑒 + 𝑥) = 0 ) = (𝑀𝑥)))
1610, 12, 15syl2anc 584 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (((𝑀𝑥) + 𝑥) = 0 ↔ (𝑒𝐵 (𝑒 + 𝑥) = 0 ) = (𝑀𝑥)))
177, 16mpbid 232 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (𝑒𝐵 (𝑒 + 𝑥) = 0 ) = (𝑀𝑥))
186, 17eqtrd 2774 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (𝑁𝑥) = (𝑀𝑥))
1918ex 412 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) → (((𝑀𝑥) + 𝑥) = 0 → (𝑁𝑥) = (𝑀𝑥)))
2019ralimdva 3164 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) → (∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 → ∀𝑥𝐵 (𝑁𝑥) = (𝑀𝑥)))
2120impr 454 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )) → ∀𝑥𝐵 (𝑁𝑥) = (𝑀𝑥))
221, 4grpinvfn 19011 . . . . 5 𝑁 Fn 𝐵
23 ffn 6736 . . . . . 6 (𝑀:𝐵𝐵𝑀 Fn 𝐵)
2423ad2antrl 728 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )) → 𝑀 Fn 𝐵)
25 eqfnfv 7050 . . . . 5 ((𝑁 Fn 𝐵𝑀 Fn 𝐵) → (𝑁 = 𝑀 ↔ ∀𝑥𝐵 (𝑁𝑥) = (𝑀𝑥)))
2622, 24, 25sylancr 587 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )) → (𝑁 = 𝑀 ↔ ∀𝑥𝐵 (𝑁𝑥) = (𝑀𝑥)))
2721, 26mpbird 257 . . 3 ((𝐺 ∈ Grp ∧ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )) → 𝑁 = 𝑀)
2827ex 412 . 2 (𝐺 ∈ Grp → ((𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 ) → 𝑁 = 𝑀))
291, 4grpinvf 19016 . . . 4 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
301, 2, 3, 4grplinv 19019 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((𝑁𝑥) + 𝑥) = 0 )
3130ralrimiva 3143 . . . 4 (𝐺 ∈ Grp → ∀𝑥𝐵 ((𝑁𝑥) + 𝑥) = 0 )
3229, 31jca 511 . . 3 (𝐺 ∈ Grp → (𝑁:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑁𝑥) + 𝑥) = 0 ))
33 feq1 6716 . . . 4 (𝑁 = 𝑀 → (𝑁:𝐵𝐵𝑀:𝐵𝐵))
34 fveq1 6905 . . . . . . 7 (𝑁 = 𝑀 → (𝑁𝑥) = (𝑀𝑥))
3534oveq1d 7445 . . . . . 6 (𝑁 = 𝑀 → ((𝑁𝑥) + 𝑥) = ((𝑀𝑥) + 𝑥))
3635eqeq1d 2736 . . . . 5 (𝑁 = 𝑀 → (((𝑁𝑥) + 𝑥) = 0 ↔ ((𝑀𝑥) + 𝑥) = 0 ))
3736ralbidv 3175 . . . 4 (𝑁 = 𝑀 → (∀𝑥𝐵 ((𝑁𝑥) + 𝑥) = 0 ↔ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 ))
3833, 37anbi12d 632 . . 3 (𝑁 = 𝑀 → ((𝑁:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑁𝑥) + 𝑥) = 0 ) ↔ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )))
3932, 38syl5ibcom 245 . 2 (𝐺 ∈ Grp → (𝑁 = 𝑀 → (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )))
4028, 39impbid 212 1 (𝐺 ∈ Grp → ((𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 ) ↔ 𝑁 = 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  ∃!wreu 3375   Fn wfn 6557  wf 6558  cfv 6562  crio 7386  (class class class)co 7430  Basecbs 17244  +gcplusg 17297  0gc0g 17485  Grpcgrp 18963  invgcminusg 18964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-fv 6570  df-riota 7387  df-ov 7433  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-grp 18966  df-minusg 18967
This theorem is referenced by:  oppginv  19392
  Copyright terms: Public domain W3C validator