MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpinv Structured version   Visualization version   GIF version

Theorem isgrpinv 19011
Description: Properties showing that a function 𝑀 is the inverse function of a group. (Contributed by NM, 7-Aug-2013.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grpinv.b 𝐵 = (Base‘𝐺)
grpinv.p + = (+g𝐺)
grpinv.u 0 = (0g𝐺)
grpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
isgrpinv (𝐺 ∈ Grp → ((𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 ) ↔ 𝑁 = 𝑀))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥, 0   𝑥, +   𝑥,𝑀   𝑥,𝑁

Proof of Theorem isgrpinv
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
2 grpinv.p . . . . . . . . . 10 + = (+g𝐺)
3 grpinv.u . . . . . . . . . 10 0 = (0g𝐺)
4 grpinv.n . . . . . . . . . 10 𝑁 = (invg𝐺)
51, 2, 3, 4grpinvval 18998 . . . . . . . . 9 (𝑥𝐵 → (𝑁𝑥) = (𝑒𝐵 (𝑒 + 𝑥) = 0 ))
65ad2antlr 727 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (𝑁𝑥) = (𝑒𝐵 (𝑒 + 𝑥) = 0 ))
7 simpr 484 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → ((𝑀𝑥) + 𝑥) = 0 )
8 simpllr 776 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → 𝑀:𝐵𝐵)
9 simplr 769 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → 𝑥𝐵)
108, 9ffvelcdmd 7105 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (𝑀𝑥) ∈ 𝐵)
111, 2, 3grpinveu 18992 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ∃!𝑒𝐵 (𝑒 + 𝑥) = 0 )
1211ad4ant13 751 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → ∃!𝑒𝐵 (𝑒 + 𝑥) = 0 )
13 oveq1 7438 . . . . . . . . . . . 12 (𝑒 = (𝑀𝑥) → (𝑒 + 𝑥) = ((𝑀𝑥) + 𝑥))
1413eqeq1d 2739 . . . . . . . . . . 11 (𝑒 = (𝑀𝑥) → ((𝑒 + 𝑥) = 0 ↔ ((𝑀𝑥) + 𝑥) = 0 ))
1514riota2 7413 . . . . . . . . . 10 (((𝑀𝑥) ∈ 𝐵 ∧ ∃!𝑒𝐵 (𝑒 + 𝑥) = 0 ) → (((𝑀𝑥) + 𝑥) = 0 ↔ (𝑒𝐵 (𝑒 + 𝑥) = 0 ) = (𝑀𝑥)))
1610, 12, 15syl2anc 584 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (((𝑀𝑥) + 𝑥) = 0 ↔ (𝑒𝐵 (𝑒 + 𝑥) = 0 ) = (𝑀𝑥)))
177, 16mpbid 232 . . . . . . . 8 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (𝑒𝐵 (𝑒 + 𝑥) = 0 ) = (𝑀𝑥))
186, 17eqtrd 2777 . . . . . . 7 ((((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) ∧ ((𝑀𝑥) + 𝑥) = 0 ) → (𝑁𝑥) = (𝑀𝑥))
1918ex 412 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) ∧ 𝑥𝐵) → (((𝑀𝑥) + 𝑥) = 0 → (𝑁𝑥) = (𝑀𝑥)))
2019ralimdva 3167 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑀:𝐵𝐵) → (∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 → ∀𝑥𝐵 (𝑁𝑥) = (𝑀𝑥)))
2120impr 454 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )) → ∀𝑥𝐵 (𝑁𝑥) = (𝑀𝑥))
221, 4grpinvfn 18999 . . . . 5 𝑁 Fn 𝐵
23 ffn 6736 . . . . . 6 (𝑀:𝐵𝐵𝑀 Fn 𝐵)
2423ad2antrl 728 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )) → 𝑀 Fn 𝐵)
25 eqfnfv 7051 . . . . 5 ((𝑁 Fn 𝐵𝑀 Fn 𝐵) → (𝑁 = 𝑀 ↔ ∀𝑥𝐵 (𝑁𝑥) = (𝑀𝑥)))
2622, 24, 25sylancr 587 . . . 4 ((𝐺 ∈ Grp ∧ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )) → (𝑁 = 𝑀 ↔ ∀𝑥𝐵 (𝑁𝑥) = (𝑀𝑥)))
2721, 26mpbird 257 . . 3 ((𝐺 ∈ Grp ∧ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )) → 𝑁 = 𝑀)
2827ex 412 . 2 (𝐺 ∈ Grp → ((𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 ) → 𝑁 = 𝑀))
291, 4grpinvf 19004 . . . 4 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
301, 2, 3, 4grplinv 19007 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → ((𝑁𝑥) + 𝑥) = 0 )
3130ralrimiva 3146 . . . 4 (𝐺 ∈ Grp → ∀𝑥𝐵 ((𝑁𝑥) + 𝑥) = 0 )
3229, 31jca 511 . . 3 (𝐺 ∈ Grp → (𝑁:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑁𝑥) + 𝑥) = 0 ))
33 feq1 6716 . . . 4 (𝑁 = 𝑀 → (𝑁:𝐵𝐵𝑀:𝐵𝐵))
34 fveq1 6905 . . . . . . 7 (𝑁 = 𝑀 → (𝑁𝑥) = (𝑀𝑥))
3534oveq1d 7446 . . . . . 6 (𝑁 = 𝑀 → ((𝑁𝑥) + 𝑥) = ((𝑀𝑥) + 𝑥))
3635eqeq1d 2739 . . . . 5 (𝑁 = 𝑀 → (((𝑁𝑥) + 𝑥) = 0 ↔ ((𝑀𝑥) + 𝑥) = 0 ))
3736ralbidv 3178 . . . 4 (𝑁 = 𝑀 → (∀𝑥𝐵 ((𝑁𝑥) + 𝑥) = 0 ↔ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 ))
3833, 37anbi12d 632 . . 3 (𝑁 = 𝑀 → ((𝑁:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑁𝑥) + 𝑥) = 0 ) ↔ (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )))
3932, 38syl5ibcom 245 . 2 (𝐺 ∈ Grp → (𝑁 = 𝑀 → (𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 )))
4028, 39impbid 212 1 (𝐺 ∈ Grp → ((𝑀:𝐵𝐵 ∧ ∀𝑥𝐵 ((𝑀𝑥) + 𝑥) = 0 ) ↔ 𝑁 = 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  ∃!wreu 3378   Fn wfn 6556  wf 6557  cfv 6561  crio 7387  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951  invgcminusg 18952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-riota 7388  df-ov 7434  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955
This theorem is referenced by:  oppginv  19378
  Copyright terms: Public domain W3C validator