Step | Hyp | Ref
| Expression |
1 | | grpinv.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐺) |
2 | | grpinv.p |
. . . . . . . . . 10
⊢ + =
(+g‘𝐺) |
3 | | grpinv.u |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝐺) |
4 | | grpinv.n |
. . . . . . . . . 10
⊢ 𝑁 = (invg‘𝐺) |
5 | 1, 2, 3, 4 | grpinvval 18620 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐵 → (𝑁‘𝑥) = (℩𝑒 ∈ 𝐵 (𝑒 + 𝑥) = 0 )) |
6 | 5 | ad2antlr 724 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) ∧ ((𝑀‘𝑥) + 𝑥) = 0 ) → (𝑁‘𝑥) = (℩𝑒 ∈ 𝐵 (𝑒 + 𝑥) = 0 )) |
7 | | simpr 485 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) ∧ ((𝑀‘𝑥) + 𝑥) = 0 ) → ((𝑀‘𝑥) + 𝑥) = 0 ) |
8 | | simpllr 773 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) ∧ ((𝑀‘𝑥) + 𝑥) = 0 ) → 𝑀:𝐵⟶𝐵) |
9 | | simplr 766 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) ∧ ((𝑀‘𝑥) + 𝑥) = 0 ) → 𝑥 ∈ 𝐵) |
10 | 8, 9 | ffvelrnd 6962 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) ∧ ((𝑀‘𝑥) + 𝑥) = 0 ) → (𝑀‘𝑥) ∈ 𝐵) |
11 | 1, 2, 3 | grpinveu 18614 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ∃!𝑒 ∈ 𝐵 (𝑒 + 𝑥) = 0 ) |
12 | 11 | ad4ant13 748 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) ∧ ((𝑀‘𝑥) + 𝑥) = 0 ) → ∃!𝑒 ∈ 𝐵 (𝑒 + 𝑥) = 0 ) |
13 | | oveq1 7282 |
. . . . . . . . . . . 12
⊢ (𝑒 = (𝑀‘𝑥) → (𝑒 + 𝑥) = ((𝑀‘𝑥) + 𝑥)) |
14 | 13 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑒 = (𝑀‘𝑥) → ((𝑒 + 𝑥) = 0 ↔ ((𝑀‘𝑥) + 𝑥) = 0 )) |
15 | 14 | riota2 7258 |
. . . . . . . . . 10
⊢ (((𝑀‘𝑥) ∈ 𝐵 ∧ ∃!𝑒 ∈ 𝐵 (𝑒 + 𝑥) = 0 ) → (((𝑀‘𝑥) + 𝑥) = 0 ↔
(℩𝑒 ∈
𝐵 (𝑒 + 𝑥) = 0 ) = (𝑀‘𝑥))) |
16 | 10, 12, 15 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) ∧ ((𝑀‘𝑥) + 𝑥) = 0 ) → (((𝑀‘𝑥) + 𝑥) = 0 ↔
(℩𝑒 ∈
𝐵 (𝑒 + 𝑥) = 0 ) = (𝑀‘𝑥))) |
17 | 7, 16 | mpbid 231 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) ∧ ((𝑀‘𝑥) + 𝑥) = 0 ) →
(℩𝑒 ∈
𝐵 (𝑒 + 𝑥) = 0 ) = (𝑀‘𝑥)) |
18 | 6, 17 | eqtrd 2778 |
. . . . . . 7
⊢ ((((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) ∧ ((𝑀‘𝑥) + 𝑥) = 0 ) → (𝑁‘𝑥) = (𝑀‘𝑥)) |
19 | 18 | ex 413 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) ∧ 𝑥 ∈ 𝐵) → (((𝑀‘𝑥) + 𝑥) = 0 → (𝑁‘𝑥) = (𝑀‘𝑥))) |
20 | 19 | ralimdva 3108 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑀:𝐵⟶𝐵) → (∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 → ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) = (𝑀‘𝑥))) |
21 | 20 | impr 455 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑀:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 )) → ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) = (𝑀‘𝑥)) |
22 | 1, 4 | grpinvfn 18621 |
. . . . 5
⊢ 𝑁 Fn 𝐵 |
23 | | ffn 6600 |
. . . . . 6
⊢ (𝑀:𝐵⟶𝐵 → 𝑀 Fn 𝐵) |
24 | 23 | ad2antrl 725 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑀:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 )) → 𝑀 Fn 𝐵) |
25 | | eqfnfv 6909 |
. . . . 5
⊢ ((𝑁 Fn 𝐵 ∧ 𝑀 Fn 𝐵) → (𝑁 = 𝑀 ↔ ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) = (𝑀‘𝑥))) |
26 | 22, 24, 25 | sylancr 587 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ (𝑀:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 )) → (𝑁 = 𝑀 ↔ ∀𝑥 ∈ 𝐵 (𝑁‘𝑥) = (𝑀‘𝑥))) |
27 | 21, 26 | mpbird 256 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ (𝑀:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 )) → 𝑁 = 𝑀) |
28 | 27 | ex 413 |
. 2
⊢ (𝐺 ∈ Grp → ((𝑀:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 ) → 𝑁 = 𝑀)) |
29 | 1, 4 | grpinvf 18626 |
. . . 4
⊢ (𝐺 ∈ Grp → 𝑁:𝐵⟶𝐵) |
30 | 1, 2, 3, 4 | grplinv 18628 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((𝑁‘𝑥) + 𝑥) = 0 ) |
31 | 30 | ralrimiva 3103 |
. . . 4
⊢ (𝐺 ∈ Grp → ∀𝑥 ∈ 𝐵 ((𝑁‘𝑥) + 𝑥) = 0 ) |
32 | 29, 31 | jca 512 |
. . 3
⊢ (𝐺 ∈ Grp → (𝑁:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑁‘𝑥) + 𝑥) = 0 )) |
33 | | feq1 6581 |
. . . 4
⊢ (𝑁 = 𝑀 → (𝑁:𝐵⟶𝐵 ↔ 𝑀:𝐵⟶𝐵)) |
34 | | fveq1 6773 |
. . . . . . 7
⊢ (𝑁 = 𝑀 → (𝑁‘𝑥) = (𝑀‘𝑥)) |
35 | 34 | oveq1d 7290 |
. . . . . 6
⊢ (𝑁 = 𝑀 → ((𝑁‘𝑥) + 𝑥) = ((𝑀‘𝑥) + 𝑥)) |
36 | 35 | eqeq1d 2740 |
. . . . 5
⊢ (𝑁 = 𝑀 → (((𝑁‘𝑥) + 𝑥) = 0 ↔ ((𝑀‘𝑥) + 𝑥) = 0 )) |
37 | 36 | ralbidv 3112 |
. . . 4
⊢ (𝑁 = 𝑀 → (∀𝑥 ∈ 𝐵 ((𝑁‘𝑥) + 𝑥) = 0 ↔ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 )) |
38 | 33, 37 | anbi12d 631 |
. . 3
⊢ (𝑁 = 𝑀 → ((𝑁:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑁‘𝑥) + 𝑥) = 0 ) ↔ (𝑀:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 ))) |
39 | 32, 38 | syl5ibcom 244 |
. 2
⊢ (𝐺 ∈ Grp → (𝑁 = 𝑀 → (𝑀:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 ))) |
40 | 28, 39 | impbid 211 |
1
⊢ (𝐺 ∈ Grp → ((𝑀:𝐵⟶𝐵 ∧ ∀𝑥 ∈ 𝐵 ((𝑀‘𝑥) + 𝑥) = 0 ) ↔ 𝑁 = 𝑀)) |