Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > gruscottcld | Structured version Visualization version GIF version |
Description: If a Grothendieck universe contains an element of a Scott's trick set, it contains the Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
gruscottcld.1 | ⊢ (𝜑 → 𝐺 ∈ Univ) |
gruscottcld.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐺) |
gruscottcld.3 | ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) |
Ref | Expression |
---|---|
gruscottcld | ⊢ (𝜑 → Scott 𝐴 ∈ 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gruscottcld.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ Univ) | |
2 | gruscottcld.3 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) | |
3 | 2 | scottrankd 41587 | . . 3 ⊢ (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵)) |
4 | gruscottcld.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐺) | |
5 | 1, 4 | grurankcld 41572 | . . . 4 ⊢ (𝜑 → (rank‘𝐵) ∈ 𝐺) |
6 | 1, 5 | grusucd 41569 | . . 3 ⊢ (𝜑 → suc (rank‘𝐵) ∈ 𝐺) |
7 | 3, 6 | eqeltrd 2840 | . 2 ⊢ (𝜑 → (rank‘Scott 𝐴) ∈ 𝐺) |
8 | scottex2 41584 | . . 3 ⊢ Scott 𝐴 ∈ V | |
9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → Scott 𝐴 ∈ V) |
10 | 1, 7, 9 | grurankrcld 41573 | 1 ⊢ (𝜑 → Scott 𝐴 ∈ 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 Vcvv 3423 suc csuc 6236 ‘cfv 6401 rankcrnk 9409 Univcgru 10434 Scott cscott 41574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5196 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-reg 9238 ax-inf2 9286 ax-ac2 10107 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-se 5528 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-isom 6410 df-riota 7192 df-ov 7238 df-oprab 7239 df-mpo 7240 df-om 7667 df-1st 7783 df-2nd 7784 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-1o 8226 df-er 8415 df-map 8534 df-en 8651 df-dom 8652 df-sdom 8653 df-fin 8654 df-tc 9383 df-r1 9410 df-rank 9411 df-card 9585 df-cf 9587 df-acn 9588 df-ac 9760 df-wina 10328 df-ina 10329 df-gru 10435 df-scott 41575 |
This theorem is referenced by: grucollcld 41599 |
Copyright terms: Public domain | W3C validator |