Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gruscottcld Structured version   Visualization version   GIF version

Theorem gruscottcld 44231
Description: If a Grothendieck universe contains an element of a Scott's trick set, it contains the Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
gruscottcld.1 (𝜑𝐺 ∈ Univ)
gruscottcld.2 (𝜑𝐵𝐺)
gruscottcld.3 (𝜑𝐵 ∈ Scott 𝐴)
Assertion
Ref Expression
gruscottcld (𝜑 → Scott 𝐴𝐺)

Proof of Theorem gruscottcld
StepHypRef Expression
1 gruscottcld.1 . 2 (𝜑𝐺 ∈ Univ)
2 gruscottcld.3 . . . 4 (𝜑𝐵 ∈ Scott 𝐴)
32scottrankd 44230 . . 3 (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵))
4 gruscottcld.2 . . . . 5 (𝜑𝐵𝐺)
51, 4grurankcld 44215 . . . 4 (𝜑 → (rank‘𝐵) ∈ 𝐺)
61, 5grusucd 44212 . . 3 (𝜑 → suc (rank‘𝐵) ∈ 𝐺)
73, 6eqeltrd 2828 . 2 (𝜑 → (rank‘Scott 𝐴) ∈ 𝐺)
8 scottex2 44227 . . 3 Scott 𝐴 ∈ V
98a1i 11 . 2 (𝜑 → Scott 𝐴 ∈ V)
101, 7, 9grurankrcld 44216 1 (𝜑 → Scott 𝐴𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3444  suc csuc 6322  cfv 6499  rankcrnk 9692  Univcgru 10719  Scott cscott 44217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570  ax-ac2 10392
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-tc 9666  df-r1 9693  df-rank 9694  df-card 9868  df-cf 9870  df-acn 9871  df-ac 10045  df-wina 10613  df-ina 10614  df-gru 10720  df-scott 44218
This theorem is referenced by:  grucollcld  44242
  Copyright terms: Public domain W3C validator