Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gruscottcld Structured version   Visualization version   GIF version

Theorem gruscottcld 41588
Description: If a Grothendieck universe contains an element of a Scott's trick set, it contains the Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Hypotheses
Ref Expression
gruscottcld.1 (𝜑𝐺 ∈ Univ)
gruscottcld.2 (𝜑𝐵𝐺)
gruscottcld.3 (𝜑𝐵 ∈ Scott 𝐴)
Assertion
Ref Expression
gruscottcld (𝜑 → Scott 𝐴𝐺)

Proof of Theorem gruscottcld
StepHypRef Expression
1 gruscottcld.1 . 2 (𝜑𝐺 ∈ Univ)
2 gruscottcld.3 . . . 4 (𝜑𝐵 ∈ Scott 𝐴)
32scottrankd 41587 . . 3 (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵))
4 gruscottcld.2 . . . . 5 (𝜑𝐵𝐺)
51, 4grurankcld 41572 . . . 4 (𝜑 → (rank‘𝐵) ∈ 𝐺)
61, 5grusucd 41569 . . 3 (𝜑 → suc (rank‘𝐵) ∈ 𝐺)
73, 6eqeltrd 2840 . 2 (𝜑 → (rank‘Scott 𝐴) ∈ 𝐺)
8 scottex2 41584 . . 3 Scott 𝐴 ∈ V
98a1i 11 . 2 (𝜑 → Scott 𝐴 ∈ V)
101, 7, 9grurankrcld 41573 1 (𝜑 → Scott 𝐴𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2112  Vcvv 3423  suc csuc 6236  cfv 6401  rankcrnk 9409  Univcgru 10434  Scott cscott 41574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5196  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545  ax-reg 9238  ax-inf2 9286  ax-ac2 10107
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5179  df-id 5472  df-eprel 5478  df-po 5486  df-so 5487  df-fr 5527  df-se 5528  df-we 5529  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-pred 6179  df-ord 6237  df-on 6238  df-lim 6239  df-suc 6240  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-isom 6410  df-riota 7192  df-ov 7238  df-oprab 7239  df-mpo 7240  df-om 7667  df-1st 7783  df-2nd 7784  df-wrecs 8071  df-recs 8132  df-rdg 8170  df-1o 8226  df-er 8415  df-map 8534  df-en 8651  df-dom 8652  df-sdom 8653  df-fin 8654  df-tc 9383  df-r1 9410  df-rank 9411  df-card 9585  df-cf 9587  df-acn 9588  df-ac 9760  df-wina 10328  df-ina 10329  df-gru 10435  df-scott 41575
This theorem is referenced by:  grucollcld  41599
  Copyright terms: Public domain W3C validator