![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gruscottcld | Structured version Visualization version GIF version |
Description: If a Grothendieck universe contains an element of a Scott's trick set, it contains the Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
Ref | Expression |
---|---|
gruscottcld.1 | β’ (π β πΊ β Univ) |
gruscottcld.2 | β’ (π β π΅ β πΊ) |
gruscottcld.3 | β’ (π β π΅ β Scott π΄) |
Ref | Expression |
---|---|
gruscottcld | β’ (π β Scott π΄ β πΊ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gruscottcld.1 | . 2 β’ (π β πΊ β Univ) | |
2 | gruscottcld.3 | . . . 4 β’ (π β π΅ β Scott π΄) | |
3 | 2 | scottrankd 42997 | . . 3 β’ (π β (rankβScott π΄) = suc (rankβπ΅)) |
4 | gruscottcld.2 | . . . . 5 β’ (π β π΅ β πΊ) | |
5 | 1, 4 | grurankcld 42982 | . . . 4 β’ (π β (rankβπ΅) β πΊ) |
6 | 1, 5 | grusucd 42979 | . . 3 β’ (π β suc (rankβπ΅) β πΊ) |
7 | 3, 6 | eqeltrd 2833 | . 2 β’ (π β (rankβScott π΄) β πΊ) |
8 | scottex2 42994 | . . 3 β’ Scott π΄ β V | |
9 | 8 | a1i 11 | . 2 β’ (π β Scott π΄ β V) |
10 | 1, 7, 9 | grurankrcld 42983 | 1 β’ (π β Scott π΄ β πΊ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2106 Vcvv 3474 suc csuc 6366 βcfv 6543 rankcrnk 9757 Univcgru 10784 Scott cscott 42984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-reg 9586 ax-inf2 9635 ax-ac2 10457 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-tc 9731 df-r1 9758 df-rank 9759 df-card 9933 df-cf 9935 df-acn 9936 df-ac 10110 df-wina 10678 df-ina 10679 df-gru 10785 df-scott 42985 |
This theorem is referenced by: grucollcld 43009 |
Copyright terms: Public domain | W3C validator |