| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlcomd | Structured version Visualization version GIF version | ||
| Description: The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
| Ref | Expression |
|---|---|
| ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
| ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
| ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| ishlg.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| hlcomd.1 | ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) |
| Ref | Expression |
|---|---|
| hlcomd | ⊢ (𝜑 → 𝐵(𝐾‘𝐶)𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlcomd.1 | . 2 ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) | |
| 2 | ishlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | ishlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | ishlg.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
| 5 | ishlg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 6 | ishlg.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 7 | ishlg.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 8 | ishlg.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | hlcomb 28582 | . 2 ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐵 ↔ 𝐵(𝐾‘𝐶)𝐴)) |
| 10 | 1, 9 | mpbid 232 | 1 ⊢ (𝜑 → 𝐵(𝐾‘𝐶)𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ‘cfv 6486 Basecbs 17122 Itvcitv 28412 hlGchlg 28579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-hlg 28580 |
| This theorem is referenced by: hlcgreulem 28596 opphllem4 28729 opphllem5 28730 opphl 28733 hlpasch 28735 lnopp2hpgb 28742 colhp 28749 cgrahl1 28795 cgrahl2 28796 cgrahl 28806 cgracol 28807 dfcgra2 28809 sacgr 28810 acopy 28812 acopyeu 28813 inaghl 28824 tgasa1 28837 |
| Copyright terms: Public domain | W3C validator |