MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcomd Structured version   Visualization version   GIF version

Theorem hlcomd 26392
Description: The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
ishlg.g (𝜑𝐺𝑉)
hlcomd.1 (𝜑𝐴(𝐾𝐶)𝐵)
Assertion
Ref Expression
hlcomd (𝜑𝐵(𝐾𝐶)𝐴)

Proof of Theorem hlcomd
StepHypRef Expression
1 hlcomd.1 . 2 (𝜑𝐴(𝐾𝐶)𝐵)
2 ishlg.p . . 3 𝑃 = (Base‘𝐺)
3 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
4 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
5 ishlg.a . . 3 (𝜑𝐴𝑃)
6 ishlg.b . . 3 (𝜑𝐵𝑃)
7 ishlg.c . . 3 (𝜑𝐶𝑃)
8 ishlg.g . . 3 (𝜑𝐺𝑉)
92, 3, 4, 5, 6, 7, 8hlcomb 26391 . 2 (𝜑 → (𝐴(𝐾𝐶)𝐵𝐵(𝐾𝐶)𝐴))
101, 9mpbid 234 1 (𝜑𝐵(𝐾𝐶)𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114   class class class wbr 5068  cfv 6357  Basecbs 16485  Itvcitv 26224  hlGchlg 26388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-hlg 26389
This theorem is referenced by:  hlcgreulem  26405  opphllem4  26538  opphllem5  26539  opphl  26542  hlpasch  26544  lnopp2hpgb  26551  colhp  26558  cgrahl1  26604  cgrahl2  26605  cgrahl  26615  cgracol  26616  dfcgra2  26618  sacgr  26619  acopy  26621  acopyeu  26622  inaghl  26633  tgasa1  26646
  Copyright terms: Public domain W3C validator