![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlcomd | Structured version Visualization version GIF version |
Description: The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
ishlg.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
hlcomd.1 | ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) |
Ref | Expression |
---|---|
hlcomd | ⊢ (𝜑 → 𝐵(𝐾‘𝐶)𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcomd.1 | . 2 ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) | |
2 | ishlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
3 | ishlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | ishlg.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
5 | ishlg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | ishlg.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | ishlg.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
8 | ishlg.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
9 | 2, 3, 4, 5, 6, 7, 8 | hlcomb 28629 | . 2 ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐵 ↔ 𝐵(𝐾‘𝐶)𝐴)) |
10 | 1, 9 | mpbid 232 | 1 ⊢ (𝜑 → 𝐵(𝐾‘𝐶)𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 Basecbs 17258 Itvcitv 28459 hlGchlg 28626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-hlg 28627 |
This theorem is referenced by: hlcgreulem 28643 opphllem4 28776 opphllem5 28777 opphl 28780 hlpasch 28782 lnopp2hpgb 28789 colhp 28796 cgrahl1 28842 cgrahl2 28843 cgrahl 28853 cgracol 28854 dfcgra2 28856 sacgr 28857 acopy 28859 acopyeu 28860 inaghl 28871 tgasa1 28884 |
Copyright terms: Public domain | W3C validator |