MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcomd Structured version   Visualization version   GIF version

Theorem hlcomd 28630
Description: The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
ishlg.g (𝜑𝐺𝑉)
hlcomd.1 (𝜑𝐴(𝐾𝐶)𝐵)
Assertion
Ref Expression
hlcomd (𝜑𝐵(𝐾𝐶)𝐴)

Proof of Theorem hlcomd
StepHypRef Expression
1 hlcomd.1 . 2 (𝜑𝐴(𝐾𝐶)𝐵)
2 ishlg.p . . 3 𝑃 = (Base‘𝐺)
3 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
4 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
5 ishlg.a . . 3 (𝜑𝐴𝑃)
6 ishlg.b . . 3 (𝜑𝐵𝑃)
7 ishlg.c . . 3 (𝜑𝐶𝑃)
8 ishlg.g . . 3 (𝜑𝐺𝑉)
92, 3, 4, 5, 6, 7, 8hlcomb 28629 . 2 (𝜑 → (𝐴(𝐾𝐶)𝐵𝐵(𝐾𝐶)𝐴))
101, 9mpbid 232 1 (𝜑𝐵(𝐾𝐶)𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  Basecbs 17258  Itvcitv 28459  hlGchlg 28626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-hlg 28627
This theorem is referenced by:  hlcgreulem  28643  opphllem4  28776  opphllem5  28777  opphl  28780  hlpasch  28782  lnopp2hpgb  28789  colhp  28796  cgrahl1  28842  cgrahl2  28843  cgrahl  28853  cgracol  28854  dfcgra2  28856  sacgr  28857  acopy  28859  acopyeu  28860  inaghl  28871  tgasa1  28884
  Copyright terms: Public domain W3C validator