MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcomd Structured version   Visualization version   GIF version

Theorem hlcomd 28583
Description: The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
ishlg.g (𝜑𝐺𝑉)
hlcomd.1 (𝜑𝐴(𝐾𝐶)𝐵)
Assertion
Ref Expression
hlcomd (𝜑𝐵(𝐾𝐶)𝐴)

Proof of Theorem hlcomd
StepHypRef Expression
1 hlcomd.1 . 2 (𝜑𝐴(𝐾𝐶)𝐵)
2 ishlg.p . . 3 𝑃 = (Base‘𝐺)
3 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
4 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
5 ishlg.a . . 3 (𝜑𝐴𝑃)
6 ishlg.b . . 3 (𝜑𝐵𝑃)
7 ishlg.c . . 3 (𝜑𝐶𝑃)
8 ishlg.g . . 3 (𝜑𝐺𝑉)
92, 3, 4, 5, 6, 7, 8hlcomb 28582 . 2 (𝜑 → (𝐴(𝐾𝐶)𝐵𝐵(𝐾𝐶)𝐴))
101, 9mpbid 232 1 (𝜑𝐵(𝐾𝐶)𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  Basecbs 17228  Itvcitv 28412  hlGchlg 28579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-hlg 28580
This theorem is referenced by:  hlcgreulem  28596  opphllem4  28729  opphllem5  28730  opphl  28733  hlpasch  28735  lnopp2hpgb  28742  colhp  28749  cgrahl1  28795  cgrahl2  28796  cgrahl  28806  cgracol  28807  dfcgra2  28809  sacgr  28810  acopy  28812  acopyeu  28813  inaghl  28824  tgasa1  28837
  Copyright terms: Public domain W3C validator