![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlcomd | Structured version Visualization version GIF version |
Description: The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
Ref | Expression |
---|---|
ishlg.p | β’ π = (BaseβπΊ) |
ishlg.i | β’ πΌ = (ItvβπΊ) |
ishlg.k | β’ πΎ = (hlGβπΊ) |
ishlg.a | β’ (π β π΄ β π) |
ishlg.b | β’ (π β π΅ β π) |
ishlg.c | β’ (π β πΆ β π) |
ishlg.g | β’ (π β πΊ β π) |
hlcomd.1 | β’ (π β π΄(πΎβπΆ)π΅) |
Ref | Expression |
---|---|
hlcomd | β’ (π β π΅(πΎβπΆ)π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcomd.1 | . 2 β’ (π β π΄(πΎβπΆ)π΅) | |
2 | ishlg.p | . . 3 β’ π = (BaseβπΊ) | |
3 | ishlg.i | . . 3 β’ πΌ = (ItvβπΊ) | |
4 | ishlg.k | . . 3 β’ πΎ = (hlGβπΊ) | |
5 | ishlg.a | . . 3 β’ (π β π΄ β π) | |
6 | ishlg.b | . . 3 β’ (π β π΅ β π) | |
7 | ishlg.c | . . 3 β’ (π β πΆ β π) | |
8 | ishlg.g | . . 3 β’ (π β πΊ β π) | |
9 | 2, 3, 4, 5, 6, 7, 8 | hlcomb 28463 | . 2 β’ (π β (π΄(πΎβπΆ)π΅ β π΅(πΎβπΆ)π΄)) |
10 | 1, 9 | mpbid 231 | 1 β’ (π β π΅(πΎβπΆ)π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 class class class wbr 5148 βcfv 6547 Basecbs 17179 Itvcitv 28293 hlGchlg 28460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-ov 7420 df-hlg 28461 |
This theorem is referenced by: hlcgreulem 28477 opphllem4 28610 opphllem5 28611 opphl 28614 hlpasch 28616 lnopp2hpgb 28623 colhp 28630 cgrahl1 28676 cgrahl2 28677 cgrahl 28687 cgracol 28688 dfcgra2 28690 sacgr 28691 acopy 28693 acopyeu 28694 inaghl 28705 tgasa1 28718 |
Copyright terms: Public domain | W3C validator |