MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcomd Structured version   Visualization version   GIF version

Theorem hlcomd 28580
Description: The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
ishlg.g (𝜑𝐺𝑉)
hlcomd.1 (𝜑𝐴(𝐾𝐶)𝐵)
Assertion
Ref Expression
hlcomd (𝜑𝐵(𝐾𝐶)𝐴)

Proof of Theorem hlcomd
StepHypRef Expression
1 hlcomd.1 . 2 (𝜑𝐴(𝐾𝐶)𝐵)
2 ishlg.p . . 3 𝑃 = (Base‘𝐺)
3 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
4 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
5 ishlg.a . . 3 (𝜑𝐴𝑃)
6 ishlg.b . . 3 (𝜑𝐵𝑃)
7 ishlg.c . . 3 (𝜑𝐶𝑃)
8 ishlg.g . . 3 (𝜑𝐺𝑉)
92, 3, 4, 5, 6, 7, 8hlcomb 28579 . 2 (𝜑 → (𝐴(𝐾𝐶)𝐵𝐵(𝐾𝐶)𝐴))
101, 9mpbid 232 1 (𝜑𝐵(𝐾𝐶)𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111   class class class wbr 5091  cfv 6481  Basecbs 17117  Itvcitv 28409  hlGchlg 28576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-hlg 28577
This theorem is referenced by:  hlcgreulem  28593  opphllem4  28726  opphllem5  28727  opphl  28730  hlpasch  28732  lnopp2hpgb  28739  colhp  28746  cgrahl1  28792  cgrahl2  28793  cgrahl  28803  cgracol  28804  dfcgra2  28806  sacgr  28807  acopy  28809  acopyeu  28810  inaghl  28821  tgasa1  28834
  Copyright terms: Public domain W3C validator