![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlcomd | Structured version Visualization version GIF version |
Description: The half-line relation commutes. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 21-Feb-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
ishlg.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
hlcomd.1 | ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) |
Ref | Expression |
---|---|
hlcomd | ⊢ (𝜑 → 𝐵(𝐾‘𝐶)𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlcomd.1 | . 2 ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) | |
2 | ishlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
3 | ishlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | ishlg.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
5 | ishlg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
6 | ishlg.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
7 | ishlg.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
8 | ishlg.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
9 | 2, 3, 4, 5, 6, 7, 8 | hlcomb 28484 | . 2 ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐵 ↔ 𝐵(𝐾‘𝐶)𝐴)) |
10 | 1, 9 | mpbid 231 | 1 ⊢ (𝜑 → 𝐵(𝐾‘𝐶)𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 class class class wbr 5149 ‘cfv 6549 Basecbs 17188 Itvcitv 28314 hlGchlg 28481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-hlg 28482 |
This theorem is referenced by: hlcgreulem 28498 opphllem4 28631 opphllem5 28632 opphl 28635 hlpasch 28637 lnopp2hpgb 28644 colhp 28651 cgrahl1 28697 cgrahl2 28698 cgrahl 28708 cgracol 28709 dfcgra2 28711 sacgr 28712 acopy 28714 acopyeu 28715 inaghl 28726 tgasa1 28739 |
Copyright terms: Public domain | W3C validator |