Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neiin Structured version   Visualization version   GIF version

Theorem neiin 36355
Description: Two neighborhoods intersect to form a neighborhood of the intersection. (Contributed by Jeff Hankins, 31-Aug-2009.)
Assertion
Ref Expression
neiin ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝑀𝑁) ∈ ((nei‘𝐽)‘(𝐴𝐵)))

Proof of Theorem neiin
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → 𝑀 ∈ ((nei‘𝐽)‘𝐴))
2 simpl 482 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → 𝐽 ∈ Top)
3 eqid 2736 . . . . . . . . 9 𝐽 = 𝐽
43neiss2 23044 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → 𝐴 𝐽)
53neii1 23049 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → 𝑀 𝐽)
63neiint 23047 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴 𝐽𝑀 𝐽) → (𝑀 ∈ ((nei‘𝐽)‘𝐴) ↔ 𝐴 ⊆ ((int‘𝐽)‘𝑀)))
72, 4, 5, 6syl3anc 1373 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → (𝑀 ∈ ((nei‘𝐽)‘𝐴) ↔ 𝐴 ⊆ ((int‘𝐽)‘𝑀)))
81, 7mpbid 232 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → 𝐴 ⊆ ((int‘𝐽)‘𝑀))
9 ssinss1 4226 . . . . . 6 (𝐴 ⊆ ((int‘𝐽)‘𝑀) → (𝐴𝐵) ⊆ ((int‘𝐽)‘𝑀))
108, 9syl 17 . . . . 5 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → (𝐴𝐵) ⊆ ((int‘𝐽)‘𝑀))
11103adant3 1132 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝐴𝐵) ⊆ ((int‘𝐽)‘𝑀))
12 inss2 4218 . . . . 5 (𝐴𝐵) ⊆ 𝐵
13 simpr 484 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝑁 ∈ ((nei‘𝐽)‘𝐵))
14 simpl 482 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝐽 ∈ Top)
153neiss2 23044 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝐵 𝐽)
163neii1 23049 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝑁 𝐽)
173neiint 23047 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐵 𝐽𝑁 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝐵) ↔ 𝐵 ⊆ ((int‘𝐽)‘𝑁)))
1814, 15, 16, 17syl3anc 1373 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝑁 ∈ ((nei‘𝐽)‘𝐵) ↔ 𝐵 ⊆ ((int‘𝐽)‘𝑁)))
1913, 18mpbid 232 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝐵 ⊆ ((int‘𝐽)‘𝑁))
20193adant2 1131 . . . . 5 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝐵 ⊆ ((int‘𝐽)‘𝑁))
2112, 20sstrid 3975 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝐴𝐵) ⊆ ((int‘𝐽)‘𝑁))
2211, 21ssind 4221 . . 3 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝐴𝐵) ⊆ (((int‘𝐽)‘𝑀) ∩ ((int‘𝐽)‘𝑁)))
23 simp1 1136 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝐽 ∈ Top)
2453adant3 1132 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝑀 𝐽)
25163adant2 1131 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝑁 𝐽)
263ntrin 23004 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 𝐽𝑁 𝐽) → ((int‘𝐽)‘(𝑀𝑁)) = (((int‘𝐽)‘𝑀) ∩ ((int‘𝐽)‘𝑁)))
2723, 24, 25, 26syl3anc 1373 . . 3 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → ((int‘𝐽)‘(𝑀𝑁)) = (((int‘𝐽)‘𝑀) ∩ ((int‘𝐽)‘𝑁)))
2822, 27sseqtrrd 4001 . 2 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝐴𝐵) ⊆ ((int‘𝐽)‘(𝑀𝑁)))
29 ssinss1 4226 . . . . 5 (𝐴 𝐽 → (𝐴𝐵) ⊆ 𝐽)
304, 29syl 17 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → (𝐴𝐵) ⊆ 𝐽)
31 ssinss1 4226 . . . . 5 (𝑀 𝐽 → (𝑀𝑁) ⊆ 𝐽)
325, 31syl 17 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → (𝑀𝑁) ⊆ 𝐽)
333neiint 23047 . . . 4 ((𝐽 ∈ Top ∧ (𝐴𝐵) ⊆ 𝐽 ∧ (𝑀𝑁) ⊆ 𝐽) → ((𝑀𝑁) ∈ ((nei‘𝐽)‘(𝐴𝐵)) ↔ (𝐴𝐵) ⊆ ((int‘𝐽)‘(𝑀𝑁))))
342, 30, 32, 33syl3anc 1373 . . 3 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → ((𝑀𝑁) ∈ ((nei‘𝐽)‘(𝐴𝐵)) ↔ (𝐴𝐵) ⊆ ((int‘𝐽)‘(𝑀𝑁))))
35343adant3 1132 . 2 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → ((𝑀𝑁) ∈ ((nei‘𝐽)‘(𝐴𝐵)) ↔ (𝐴𝐵) ⊆ ((int‘𝐽)‘(𝑀𝑁))))
3628, 35mpbird 257 1 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝑀𝑁) ∈ ((nei‘𝐽)‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3930  wss 3931   cuni 4888  cfv 6536  Topctop 22836  intcnt 22960  neicnei 23040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-top 22837  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator