Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neiin Structured version   Visualization version   GIF version

Theorem neiin 36298
Description: Two neighborhoods intersect to form a neighborhood of the intersection. (Contributed by Jeff Hankins, 31-Aug-2009.)
Assertion
Ref Expression
neiin ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝑀𝑁) ∈ ((nei‘𝐽)‘(𝐴𝐵)))

Proof of Theorem neiin
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → 𝑀 ∈ ((nei‘𝐽)‘𝐴))
2 simpl 482 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → 𝐽 ∈ Top)
3 eqid 2740 . . . . . . . . 9 𝐽 = 𝐽
43neiss2 23130 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → 𝐴 𝐽)
53neii1 23135 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → 𝑀 𝐽)
63neiint 23133 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴 𝐽𝑀 𝐽) → (𝑀 ∈ ((nei‘𝐽)‘𝐴) ↔ 𝐴 ⊆ ((int‘𝐽)‘𝑀)))
72, 4, 5, 6syl3anc 1371 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → (𝑀 ∈ ((nei‘𝐽)‘𝐴) ↔ 𝐴 ⊆ ((int‘𝐽)‘𝑀)))
81, 7mpbid 232 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → 𝐴 ⊆ ((int‘𝐽)‘𝑀))
9 ssinss1 4267 . . . . . 6 (𝐴 ⊆ ((int‘𝐽)‘𝑀) → (𝐴𝐵) ⊆ ((int‘𝐽)‘𝑀))
108, 9syl 17 . . . . 5 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → (𝐴𝐵) ⊆ ((int‘𝐽)‘𝑀))
11103adant3 1132 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝐴𝐵) ⊆ ((int‘𝐽)‘𝑀))
12 inss2 4259 . . . . 5 (𝐴𝐵) ⊆ 𝐵
13 simpr 484 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝑁 ∈ ((nei‘𝐽)‘𝐵))
14 simpl 482 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝐽 ∈ Top)
153neiss2 23130 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝐵 𝐽)
163neii1 23135 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝑁 𝐽)
173neiint 23133 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐵 𝐽𝑁 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝐵) ↔ 𝐵 ⊆ ((int‘𝐽)‘𝑁)))
1814, 15, 16, 17syl3anc 1371 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝑁 ∈ ((nei‘𝐽)‘𝐵) ↔ 𝐵 ⊆ ((int‘𝐽)‘𝑁)))
1913, 18mpbid 232 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝐵 ⊆ ((int‘𝐽)‘𝑁))
20193adant2 1131 . . . . 5 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝐵 ⊆ ((int‘𝐽)‘𝑁))
2112, 20sstrid 4020 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝐴𝐵) ⊆ ((int‘𝐽)‘𝑁))
2211, 21ssind 4262 . . 3 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝐴𝐵) ⊆ (((int‘𝐽)‘𝑀) ∩ ((int‘𝐽)‘𝑁)))
23 simp1 1136 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝐽 ∈ Top)
2453adant3 1132 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝑀 𝐽)
25163adant2 1131 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝑁 𝐽)
263ntrin 23090 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 𝐽𝑁 𝐽) → ((int‘𝐽)‘(𝑀𝑁)) = (((int‘𝐽)‘𝑀) ∩ ((int‘𝐽)‘𝑁)))
2723, 24, 25, 26syl3anc 1371 . . 3 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → ((int‘𝐽)‘(𝑀𝑁)) = (((int‘𝐽)‘𝑀) ∩ ((int‘𝐽)‘𝑁)))
2822, 27sseqtrrd 4050 . 2 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝐴𝐵) ⊆ ((int‘𝐽)‘(𝑀𝑁)))
29 ssinss1 4267 . . . . 5 (𝐴 𝐽 → (𝐴𝐵) ⊆ 𝐽)
304, 29syl 17 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → (𝐴𝐵) ⊆ 𝐽)
31 ssinss1 4267 . . . . 5 (𝑀 𝐽 → (𝑀𝑁) ⊆ 𝐽)
325, 31syl 17 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → (𝑀𝑁) ⊆ 𝐽)
333neiint 23133 . . . 4 ((𝐽 ∈ Top ∧ (𝐴𝐵) ⊆ 𝐽 ∧ (𝑀𝑁) ⊆ 𝐽) → ((𝑀𝑁) ∈ ((nei‘𝐽)‘(𝐴𝐵)) ↔ (𝐴𝐵) ⊆ ((int‘𝐽)‘(𝑀𝑁))))
342, 30, 32, 33syl3anc 1371 . . 3 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → ((𝑀𝑁) ∈ ((nei‘𝐽)‘(𝐴𝐵)) ↔ (𝐴𝐵) ⊆ ((int‘𝐽)‘(𝑀𝑁))))
35343adant3 1132 . 2 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → ((𝑀𝑁) ∈ ((nei‘𝐽)‘(𝐴𝐵)) ↔ (𝐴𝐵) ⊆ ((int‘𝐽)‘(𝑀𝑁))))
3628, 35mpbird 257 1 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝑀𝑁) ∈ ((nei‘𝐽)‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  cin 3975  wss 3976   cuni 4931  cfv 6573  Topctop 22920  intcnt 23046  neicnei 23126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-top 22921  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator