Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neiin Structured version   Visualization version   GIF version

Theorem neiin 34448
Description: Two neighborhoods intersect to form a neighborhood of the intersection. (Contributed by Jeff Hankins, 31-Aug-2009.)
Assertion
Ref Expression
neiin ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝑀𝑁) ∈ ((nei‘𝐽)‘(𝐴𝐵)))

Proof of Theorem neiin
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → 𝑀 ∈ ((nei‘𝐽)‘𝐴))
2 simpl 482 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → 𝐽 ∈ Top)
3 eqid 2738 . . . . . . . . 9 𝐽 = 𝐽
43neiss2 22160 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → 𝐴 𝐽)
53neii1 22165 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → 𝑀 𝐽)
63neiint 22163 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴 𝐽𝑀 𝐽) → (𝑀 ∈ ((nei‘𝐽)‘𝐴) ↔ 𝐴 ⊆ ((int‘𝐽)‘𝑀)))
72, 4, 5, 6syl3anc 1369 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → (𝑀 ∈ ((nei‘𝐽)‘𝐴) ↔ 𝐴 ⊆ ((int‘𝐽)‘𝑀)))
81, 7mpbid 231 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → 𝐴 ⊆ ((int‘𝐽)‘𝑀))
9 ssinss1 4168 . . . . . 6 (𝐴 ⊆ ((int‘𝐽)‘𝑀) → (𝐴𝐵) ⊆ ((int‘𝐽)‘𝑀))
108, 9syl 17 . . . . 5 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → (𝐴𝐵) ⊆ ((int‘𝐽)‘𝑀))
11103adant3 1130 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝐴𝐵) ⊆ ((int‘𝐽)‘𝑀))
12 inss2 4160 . . . . 5 (𝐴𝐵) ⊆ 𝐵
13 simpr 484 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝑁 ∈ ((nei‘𝐽)‘𝐵))
14 simpl 482 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝐽 ∈ Top)
153neiss2 22160 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝐵 𝐽)
163neii1 22165 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝑁 𝐽)
173neiint 22163 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐵 𝐽𝑁 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝐵) ↔ 𝐵 ⊆ ((int‘𝐽)‘𝑁)))
1814, 15, 16, 17syl3anc 1369 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝑁 ∈ ((nei‘𝐽)‘𝐵) ↔ 𝐵 ⊆ ((int‘𝐽)‘𝑁)))
1913, 18mpbid 231 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝐵 ⊆ ((int‘𝐽)‘𝑁))
20193adant2 1129 . . . . 5 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝐵 ⊆ ((int‘𝐽)‘𝑁))
2112, 20sstrid 3928 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝐴𝐵) ⊆ ((int‘𝐽)‘𝑁))
2211, 21ssind 4163 . . 3 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝐴𝐵) ⊆ (((int‘𝐽)‘𝑀) ∩ ((int‘𝐽)‘𝑁)))
23 simp1 1134 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝐽 ∈ Top)
2453adant3 1130 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝑀 𝐽)
25163adant2 1129 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → 𝑁 𝐽)
263ntrin 22120 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 𝐽𝑁 𝐽) → ((int‘𝐽)‘(𝑀𝑁)) = (((int‘𝐽)‘𝑀) ∩ ((int‘𝐽)‘𝑁)))
2723, 24, 25, 26syl3anc 1369 . . 3 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → ((int‘𝐽)‘(𝑀𝑁)) = (((int‘𝐽)‘𝑀) ∩ ((int‘𝐽)‘𝑁)))
2822, 27sseqtrrd 3958 . 2 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝐴𝐵) ⊆ ((int‘𝐽)‘(𝑀𝑁)))
29 ssinss1 4168 . . . . 5 (𝐴 𝐽 → (𝐴𝐵) ⊆ 𝐽)
304, 29syl 17 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → (𝐴𝐵) ⊆ 𝐽)
31 ssinss1 4168 . . . . 5 (𝑀 𝐽 → (𝑀𝑁) ⊆ 𝐽)
325, 31syl 17 . . . 4 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → (𝑀𝑁) ⊆ 𝐽)
333neiint 22163 . . . 4 ((𝐽 ∈ Top ∧ (𝐴𝐵) ⊆ 𝐽 ∧ (𝑀𝑁) ⊆ 𝐽) → ((𝑀𝑁) ∈ ((nei‘𝐽)‘(𝐴𝐵)) ↔ (𝐴𝐵) ⊆ ((int‘𝐽)‘(𝑀𝑁))))
342, 30, 32, 33syl3anc 1369 . . 3 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴)) → ((𝑀𝑁) ∈ ((nei‘𝐽)‘(𝐴𝐵)) ↔ (𝐴𝐵) ⊆ ((int‘𝐽)‘(𝑀𝑁))))
35343adant3 1130 . 2 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → ((𝑀𝑁) ∈ ((nei‘𝐽)‘(𝐴𝐵)) ↔ (𝐴𝐵) ⊆ ((int‘𝐽)‘(𝑀𝑁))))
3628, 35mpbird 256 1 ((𝐽 ∈ Top ∧ 𝑀 ∈ ((nei‘𝐽)‘𝐴) ∧ 𝑁 ∈ ((nei‘𝐽)‘𝐵)) → (𝑀𝑁) ∈ ((nei‘𝐽)‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  cin 3882  wss 3883   cuni 4836  cfv 6418  Topctop 21950  intcnt 22076  neicnei 22156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-top 21951  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator