Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hmeocnvcn | Structured version Visualization version GIF version |
Description: The converse of a homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
hmeocnvcn | ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishmeo 22510 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽))) | |
2 | 1 | simprbi 500 | 1 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 ◡ccnv 5524 (class class class)co 7170 Cn ccn 21975 Homeochmeo 22504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 df-map 8439 df-top 21645 df-topon 21662 df-cn 21978 df-hmeo 22506 |
This theorem is referenced by: hmeocnv 22513 hmeof1o2 22514 hmeoima 22516 hmeocld 22518 hmeocls 22519 hmeontr 22520 hmeores 22522 hmeoco 22523 txhmeo 22554 tgpconncompeqg 22863 mndpluscn 31448 cvmliftlem8 32825 hmeoclda 34160 |
Copyright terms: Public domain | W3C validator |