Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hmeocnvcn | Structured version Visualization version GIF version |
Description: The converse of a homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
hmeocnvcn | ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishmeo 22818 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽))) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ◡ccnv 5579 (class class class)co 7255 Cn ccn 22283 Homeochmeo 22812 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-top 21951 df-topon 21968 df-cn 22286 df-hmeo 22814 |
This theorem is referenced by: hmeocnv 22821 hmeof1o2 22822 hmeoima 22824 hmeocld 22826 hmeocls 22827 hmeontr 22828 hmeores 22830 hmeoco 22831 txhmeo 22862 tgpconncompeqg 23171 mndpluscn 31778 cvmliftlem8 33154 hmeoclda 34449 |
Copyright terms: Public domain | W3C validator |