MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeocnvcn Structured version   Visualization version   GIF version

Theorem hmeocnvcn 22512
Description: The converse of a homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmeocnvcn (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))

Proof of Theorem hmeocnvcn
StepHypRef Expression
1 ishmeo 22510 . 2 (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
21simprbi 500 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  ccnv 5524  (class class class)co 7170   Cn ccn 21975  Homeochmeo 22504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-fv 6347  df-ov 7173  df-oprab 7174  df-mpo 7175  df-map 8439  df-top 21645  df-topon 21662  df-cn 21978  df-hmeo 22506
This theorem is referenced by:  hmeocnv  22513  hmeof1o2  22514  hmeoima  22516  hmeocld  22518  hmeocls  22519  hmeontr  22520  hmeores  22522  hmeoco  22523  txhmeo  22554  tgpconncompeqg  22863  mndpluscn  31448  cvmliftlem8  32825  hmeoclda  34160
  Copyright terms: Public domain W3C validator