| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hmeocnvcn | Structured version Visualization version GIF version | ||
| Description: The converse of a homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| hmeocnvcn | ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishmeo 23680 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ ◡𝐹 ∈ (𝐾 Cn 𝐽))) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → ◡𝐹 ∈ (𝐾 Cn 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ◡ccnv 5630 (class class class)co 7369 Cn ccn 23145 Homeochmeo 23674 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-top 22815 df-topon 22832 df-cn 23148 df-hmeo 23676 |
| This theorem is referenced by: hmeocnv 23683 hmeof1o2 23684 hmeoima 23686 hmeocld 23688 hmeocls 23689 hmeontr 23690 hmeores 23692 hmeoco 23693 txhmeo 23724 tgpconncompeqg 24033 mndpluscn 33910 cvmliftlem8 35273 hmeoclda 36315 |
| Copyright terms: Public domain | W3C validator |