MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmeocnvcn Structured version   Visualization version   GIF version

Theorem hmeocnvcn 23683
Description: The converse of a homeomorphism is continuous. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
hmeocnvcn (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))

Proof of Theorem hmeocnvcn
StepHypRef Expression
1 ishmeo 23681 . 2 (𝐹 ∈ (𝐽Homeo𝐾) ↔ (𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐹 ∈ (𝐾 Cn 𝐽)))
21simprbi 495 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  ccnv 5671  (class class class)co 7416   Cn ccn 23146  Homeochmeo 23675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3769  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7419  df-oprab 7420  df-mpo 7421  df-map 8845  df-top 22814  df-topon 22831  df-cn 23149  df-hmeo 23677
This theorem is referenced by:  hmeocnv  23684  hmeof1o2  23685  hmeoima  23687  hmeocld  23689  hmeocls  23690  hmeontr  23691  hmeores  23693  hmeoco  23694  txhmeo  23725  tgpconncompeqg  24034  mndpluscn  33584  cvmliftlem8  34959  hmeoclda  35874
  Copyright terms: Public domain W3C validator