![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hst1a | Structured version Visualization version GIF version |
Description: Unit value of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hst1a | ⊢ (𝑆 ∈ CHStates → (normℎ‘(𝑆‘ ℋ)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishst 32246 | . 2 ⊢ (𝑆 ∈ CHStates ↔ (𝑆: Cℋ ⟶ ℋ ∧ (normℎ‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (((𝑆‘𝑥) ·ih (𝑆‘𝑦)) = 0 ∧ (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) +ℎ (𝑆‘𝑦)))))) | |
2 | 1 | simp2bi 1146 | 1 ⊢ (𝑆 ∈ CHStates → (normℎ‘(𝑆‘ ℋ)) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 ℋchba 30951 +ℎ cva 30952 ·ih csp 30954 normℎcno 30955 Cℋ cch 30961 ⊥cort 30962 ∨ℋ chj 30965 CHStateschst 30995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-hilex 31031 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-sh 31239 df-ch 31253 df-hst 32244 |
This theorem is referenced by: hstnmoc 32255 hst1h 32259 |
Copyright terms: Public domain | W3C validator |