HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstcl Structured version   Visualization version   GIF version

Theorem hstcl 30868
Description: Closure of the value of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hstcl ((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆𝐴) ∈ ℋ)

Proof of Theorem hstcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishst 30865 . . 3 (𝑆 ∈ CHStates ↔ (𝑆: C ⟶ ℋ ∧ (norm‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
21simp1bi 1144 . 2 (𝑆 ∈ CHStates → 𝑆: C ⟶ ℋ)
32ffvelcdmda 7018 1 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆𝐴) ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3061  wss 3898  wf 6476  cfv 6480  (class class class)co 7338  0cc0 10973  1c1 10974  chba 29570   + cva 29571   ·ih csp 29573  normcno 29574   C cch 29580  cort 29581   chj 29584  CHStateschst 29614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-hilex 29650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-br 5094  df-opab 5156  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-fv 6488  df-ov 7341  df-oprab 7342  df-mpo 7343  df-map 8689  df-sh 29858  df-ch 29872  df-hst 30863
This theorem is referenced by:  hstnmoc  30874  hstle1  30877  hst1h  30878  hst0h  30879  hstpyth  30880  hstle  30881  hstles  30882  hstoh  30883  hstrlem6  30915
  Copyright terms: Public domain W3C validator