HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstcl Structured version   Visualization version   GIF version

Theorem hstcl 32119
Description: Closure of the value of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hstcl ((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆𝐴) ∈ ℋ)

Proof of Theorem hstcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishst 32116 . . 3 (𝑆 ∈ CHStates ↔ (𝑆: C ⟶ ℋ ∧ (norm‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
21simp1bi 1145 . 2 (𝑆 ∈ CHStates → 𝑆: C ⟶ ℋ)
32ffvelcdmda 7038 1 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆𝐴) ∈ ℋ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3911  wf 6495  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045  chba 30821   + cva 30822   ·ih csp 30824  normcno 30825   C cch 30831  cort 30832   chj 30835  CHStateschst 30865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-hilex 30901
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-sh 31109  df-ch 31123  df-hst 32114
This theorem is referenced by:  hstnmoc  32125  hstle1  32128  hst1h  32129  hst0h  32130  hstpyth  32131  hstle  32132  hstles  32133  hstoh  32134  hstrlem6  32166
  Copyright terms: Public domain W3C validator