Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hstcl | Structured version Visualization version GIF version |
Description: Closure of the value of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hstcl | ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘𝐴) ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishst 30865 | . . 3 ⊢ (𝑆 ∈ CHStates ↔ (𝑆: Cℋ ⟶ ℋ ∧ (normℎ‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (((𝑆‘𝑥) ·ih (𝑆‘𝑦)) = 0 ∧ (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) +ℎ (𝑆‘𝑦)))))) | |
2 | 1 | simp1bi 1144 | . 2 ⊢ (𝑆 ∈ CHStates → 𝑆: Cℋ ⟶ ℋ) |
3 | 2 | ffvelcdmda 7018 | 1 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘𝐴) ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ⊆ wss 3898 ⟶wf 6476 ‘cfv 6480 (class class class)co 7338 0cc0 10973 1c1 10974 ℋchba 29570 +ℎ cva 29571 ·ih csp 29573 normℎcno 29574 Cℋ cch 29580 ⊥cort 29581 ∨ℋ chj 29584 CHStateschst 29614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-hilex 29650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-fv 6488 df-ov 7341 df-oprab 7342 df-mpo 7343 df-map 8689 df-sh 29858 df-ch 29872 df-hst 30863 |
This theorem is referenced by: hstnmoc 30874 hstle1 30877 hst1h 30878 hst0h 30879 hstpyth 30880 hstle 30881 hstles 30882 hstoh 30883 hstrlem6 30915 |
Copyright terms: Public domain | W3C validator |