| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hstcl | Structured version Visualization version GIF version | ||
| Description: Closure of the value of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hstcl | ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘𝐴) ∈ ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishst 32158 | . . 3 ⊢ (𝑆 ∈ CHStates ↔ (𝑆: Cℋ ⟶ ℋ ∧ (normℎ‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (𝑥 ⊆ (⊥‘𝑦) → (((𝑆‘𝑥) ·ih (𝑆‘𝑦)) = 0 ∧ (𝑆‘(𝑥 ∨ℋ 𝑦)) = ((𝑆‘𝑥) +ℎ (𝑆‘𝑦)))))) | |
| 2 | 1 | simp1bi 1145 | . 2 ⊢ (𝑆 ∈ CHStates → 𝑆: Cℋ ⟶ ℋ) |
| 3 | 2 | ffvelcdmda 7018 | 1 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘𝐴) ∈ ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3903 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 0cc0 11009 1c1 11010 ℋchba 30863 +ℎ cva 30864 ·ih csp 30866 normℎcno 30867 Cℋ cch 30873 ⊥cort 30874 ∨ℋ chj 30877 CHStateschst 30907 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-hilex 30943 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-sh 31151 df-ch 31165 df-hst 32156 |
| This theorem is referenced by: hstnmoc 32167 hstle1 32170 hst1h 32171 hst0h 32172 hstpyth 32173 hstle 32174 hstles 32175 hstoh 32176 hstrlem6 32208 |
| Copyright terms: Public domain | W3C validator |