MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmbf Structured version   Visualization version   GIF version

Theorem i1fmbf 25729
Description: Simple functions are measurable. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
i1fmbf (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)

Proof of Theorem i1fmbf
StepHypRef Expression
1 isi1f 25728 . 2 (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))
21simplbi 497 1 (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wcel 2108  cdif 3973  {csn 4648  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  wf 6569  cfv 6573  Fincfn 9003  cr 11183  0cc0 11184  volcvol 25517  MblFncmbf 25668  1citg1 25669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-sum 15735  df-itg1 25674
This theorem is referenced by:  i1fima  25732  i1fadd  25749  mbfmullem2  25779  itg2monolem1  25805  itg2i1fseq  25810  i1fibl  25863  itg2addnclem2  37632  ftc1anclem4  37656  ftc1anclem5  37657  ftc1anclem8  37660
  Copyright terms: Public domain W3C validator