| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > i1fmbf | Structured version Visualization version GIF version | ||
| Description: Simple functions are measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1fmbf | ⊢ (𝐹 ∈ dom ∫1 → 𝐹 ∈ MblFn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isi1f 25622 | . 2 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐹 ∈ dom ∫1 → 𝐹 ∈ MblFn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2113 ∖ cdif 3895 {csn 4577 ◡ccnv 5620 dom cdm 5621 ran crn 5622 “ cima 5624 ⟶wf 6485 ‘cfv 6489 Fincfn 8879 ℝcr 11016 0cc0 11017 volcvol 25411 MblFncmbf 25562 ∫1citg1 25563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-sum 15601 df-itg1 25568 |
| This theorem is referenced by: i1fima 25626 i1fadd 25643 mbfmullem2 25672 itg2monolem1 25698 itg2i1fseq 25703 i1fibl 25756 itg2addnclem2 37785 ftc1anclem4 37809 ftc1anclem5 37810 ftc1anclem8 37813 |
| Copyright terms: Public domain | W3C validator |