MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmbf Structured version   Visualization version   GIF version

Theorem i1fmbf 23879
Description: Simple functions are measurable. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
i1fmbf (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)

Proof of Theorem i1fmbf
StepHypRef Expression
1 isi1f 23878 . 2 (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))
21simplbi 493 1 (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071  wcel 2107  cdif 3789  {csn 4398  ccnv 5354  dom cdm 5355  ran crn 5356  cima 5358  wf 6131  cfv 6135  Fincfn 8241  cr 10271  0cc0 10272  volcvol 23667  MblFncmbf 23818  1citg1 23819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-fv 6143  df-sum 14825  df-itg1 23824
This theorem is referenced by:  i1fima  23882  i1fadd  23899  mbfmullem2  23928  itg2monolem1  23954  itg2i1fseq  23959  i1fibl  24011  itg2addnclem2  34087  ftc1anclem4  34113  ftc1anclem5  34114  ftc1anclem8  34117
  Copyright terms: Public domain W3C validator