Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > i1fmbf | Structured version Visualization version GIF version |
Description: Simple functions are measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
Ref | Expression |
---|---|
i1fmbf | ⊢ (𝐹 ∈ dom ∫1 → 𝐹 ∈ MblFn) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isi1f 24849 | . 2 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝐹 ∈ dom ∫1 → 𝐹 ∈ MblFn) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2110 ∖ cdif 3889 {csn 4567 ◡ccnv 5589 dom cdm 5590 ran crn 5591 “ cima 5593 ⟶wf 6428 ‘cfv 6432 Fincfn 8725 ℝcr 10881 0cc0 10882 volcvol 24638 MblFncmbf 24789 ∫1citg1 24790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-sum 15409 df-itg1 24795 |
This theorem is referenced by: i1fima 24853 i1fadd 24870 mbfmullem2 24900 itg2monolem1 24926 itg2i1fseq 24931 i1fibl 24983 itg2addnclem2 35838 ftc1anclem4 35862 ftc1anclem5 35863 ftc1anclem8 35866 |
Copyright terms: Public domain | W3C validator |