MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fmbf Structured version   Visualization version   GIF version

Theorem i1fmbf 25633
Description: Simple functions are measurable. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
i1fmbf (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)

Proof of Theorem i1fmbf
StepHypRef Expression
1 isi1f 25632 . 2 (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)))
21simplbi 497 1 (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  cdif 3928  {csn 4606  ccnv 5658  dom cdm 5659  ran crn 5660  cima 5662  wf 6532  cfv 6536  Fincfn 8964  cr 11133  0cc0 11134  volcvol 25421  MblFncmbf 25572  1citg1 25573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-sum 15708  df-itg1 25578
This theorem is referenced by:  i1fima  25636  i1fadd  25653  mbfmullem2  25682  itg2monolem1  25708  itg2i1fseq  25713  i1fibl  25766  itg2addnclem2  37701  ftc1anclem4  37725  ftc1anclem5  37726  ftc1anclem8  37729
  Copyright terms: Public domain W3C validator