MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fibl Structured version   Visualization version   GIF version

Theorem i1fibl 24408
Description: A simple function is integrable. (Contributed by Mario Carneiro, 6-Aug-2014.)
Assertion
Ref Expression
i1fibl (𝐹 ∈ dom ∫1𝐹 ∈ 𝐿1)

Proof of Theorem i1fibl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 i1ff 24277 . . 3 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
21feqmptd 6733 . 2 (𝐹 ∈ dom ∫1𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
3 i1fmbf 24276 . . . 4 (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)
42, 3eqeltrrd 2914 . . 3 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ MblFn)
5 simpr 487 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
65biantrurd 535 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥))))
76ifbid 4489 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) = if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))
87mpteq2dva 5161 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0)))
98fveq2d 6674 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))))
10 eqid 2821 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
1110i1fpos 24307 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1)
12 0re 10643 . . . . . . . . . 10 0 ∈ ℝ
131ffvelrnda 6851 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
14 max1 12579 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
1512, 13, 14sylancr 589 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
1615ralrimiva 3182 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
17 reex 10628 . . . . . . . . . 10 ℝ ∈ V
1817a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ℝ ∈ V)
1912a1i 11 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ∈ ℝ)
20 fvex 6683 . . . . . . . . . . 11 (𝐹𝑥) ∈ V
21 c0ex 10635 . . . . . . . . . . 11 0 ∈ V
2220, 21ifex 4515 . . . . . . . . . 10 if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∈ V
2322a1i 11 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∈ V)
24 fconstmpt 5614 . . . . . . . . . 10 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
2524a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0))
26 eqidd 2822 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
2718, 19, 23, 25, 26ofrfval2 7427 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
2816, 27mpbird 259 . . . . . . 7 (𝐹 ∈ dom ∫1 → (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
29 ax-resscn 10594 . . . . . . . . 9 ℝ ⊆ ℂ
3029a1i 11 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ℝ ⊆ ℂ)
3122, 10fnmpti 6491 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) Fn ℝ
3231a1i 11 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) Fn ℝ)
3330, 320pledm 24274 . . . . . . 7 (𝐹 ∈ dom ∫1 → (0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ↔ (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
3428, 33mpbird 259 . . . . . 6 (𝐹 ∈ dom ∫1 → 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
35 itg2itg1 24337 . . . . . 6 (((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
3611, 34, 35syl2anc 586 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
379, 36eqtr3d 2858 . . . 4 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
38 itg1cl 24286 . . . . 5 ((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) ∈ ℝ)
3911, 38syl 17 . . . 4 (𝐹 ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) ∈ ℝ)
4037, 39eqeltrd 2913 . . 3 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))) ∈ ℝ)
415biantrurd 535 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (0 ≤ -(𝐹𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥))))
4241ifbid 4489 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) = if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))
4342mpteq2dva 5161 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0)))
4443fveq2d 6674 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))))
45 neg1rr 11753 . . . . . . . . . . 11 -1 ∈ ℝ
4645a1i 11 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → -1 ∈ ℝ)
47 fconstmpt 5614 . . . . . . . . . . 11 (ℝ × {-1}) = (𝑥 ∈ ℝ ↦ -1)
4847a1i 11 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → (ℝ × {-1}) = (𝑥 ∈ ℝ ↦ -1))
4918, 46, 13, 48, 2offval2 7426 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ((ℝ × {-1}) ∘f · 𝐹) = (𝑥 ∈ ℝ ↦ (-1 · (𝐹𝑥))))
5013recnd 10669 . . . . . . . . . . 11 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℂ)
5150mulm1d 11092 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (-1 · (𝐹𝑥)) = -(𝐹𝑥))
5251mpteq2dva 5161 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (-1 · (𝐹𝑥))) = (𝑥 ∈ ℝ ↦ -(𝐹𝑥)))
5349, 52eqtrd 2856 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {-1}) ∘f · 𝐹) = (𝑥 ∈ ℝ ↦ -(𝐹𝑥)))
54 id 22 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹 ∈ dom ∫1)
5545a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → -1 ∈ ℝ)
5654, 55i1fmulc 24304 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {-1}) ∘f · 𝐹) ∈ dom ∫1)
5753, 56eqeltrrd 2914 . . . . . . 7 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ -(𝐹𝑥)) ∈ dom ∫1)
5857i1fposd 24308 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1)
5913renegcld 11067 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → -(𝐹𝑥) ∈ ℝ)
60 max1 12579 . . . . . . . . . 10 ((0 ∈ ℝ ∧ -(𝐹𝑥) ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
6112, 59, 60sylancr 589 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
6261ralrimiva 3182 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
63 negex 10884 . . . . . . . . . . 11 -(𝐹𝑥) ∈ V
6463, 21ifex 4515 . . . . . . . . . 10 if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) ∈ V
6564a1i 11 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) ∈ V)
66 eqidd 2822 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
6718, 19, 65, 25, 66ofrfval2 7427 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
6862, 67mpbird 259 . . . . . . 7 (𝐹 ∈ dom ∫1 → (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
69 eqid 2821 . . . . . . . . . 10 (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
7064, 69fnmpti 6491 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) Fn ℝ
7170a1i 11 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) Fn ℝ)
7230, 710pledm 24274 . . . . . . 7 (𝐹 ∈ dom ∫1 → (0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ↔ (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
7368, 72mpbird 259 . . . . . 6 (𝐹 ∈ dom ∫1 → 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
74 itg2itg1 24337 . . . . . 6 (((𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
7558, 73, 74syl2anc 586 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
7644, 75eqtr3d 2858 . . . 4 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
77 itg1cl 24286 . . . . 5 ((𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∈ ℝ)
7858, 77syl 17 . . . 4 (𝐹 ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∈ ℝ)
7976, 78eqeltrd 2913 . . 3 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))) ∈ ℝ)
8013iblrelem 24391 . . 3 (𝐹 ∈ dom ∫1 → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ 𝐿1 ↔ ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))) ∈ ℝ)))
814, 40, 79, 80mpbir3and 1338 . 2 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ 𝐿1)
822, 81eqeltrd 2913 1 (𝐹 ∈ dom ∫1𝐹 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  wss 3936  ifcif 4467  {csn 4567   class class class wbr 5066  cmpt 5146   × cxp 5553  dom cdm 5555   Fn wfn 6350  cfv 6355  (class class class)co 7156  f cof 7407  r cofr 7408  cc 10535  cr 10536  0cc0 10537  1c1 10538   · cmul 10542  cle 10676  -cneg 10871  MblFncmbf 24215  1citg1 24216  2citg2 24217  𝐿1cibl 24218  0𝑝c0p 24270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-rest 16696  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-bases 21554  df-cmp 21995  df-ovol 24065  df-vol 24066  df-mbf 24220  df-itg1 24221  df-itg2 24222  df-ibl 24223  df-0p 24271
This theorem is referenced by:  itgitg1  24409  ftc1anclem4  34985
  Copyright terms: Public domain W3C validator