MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fibl Structured version   Visualization version   GIF version

Theorem i1fibl 25786
Description: A simple function is integrable. (Contributed by Mario Carneiro, 6-Aug-2014.)
Assertion
Ref Expression
i1fibl (𝐹 ∈ dom ∫1𝐹 ∈ 𝐿1)

Proof of Theorem i1fibl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 i1ff 25654 . . 3 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
21feqmptd 6966 . 2 (𝐹 ∈ dom ∫1𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
3 i1fmbf 25653 . . . 4 (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)
42, 3eqeltrrd 2826 . . 3 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ MblFn)
5 simpr 483 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
65biantrurd 531 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥))))
76ifbid 4553 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) = if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))
87mpteq2dva 5249 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0)))
98fveq2d 6900 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))))
10 eqid 2725 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
1110i1fpos 25685 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1)
12 0re 11253 . . . . . . . . . 10 0 ∈ ℝ
131ffvelcdmda 7093 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
14 max1 13204 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
1512, 13, 14sylancr 585 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
1615ralrimiva 3135 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
17 reex 11236 . . . . . . . . . 10 ℝ ∈ V
1817a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ℝ ∈ V)
1912a1i 11 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ∈ ℝ)
20 fvex 6909 . . . . . . . . . . 11 (𝐹𝑥) ∈ V
21 c0ex 11245 . . . . . . . . . . 11 0 ∈ V
2220, 21ifex 4580 . . . . . . . . . 10 if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∈ V
2322a1i 11 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∈ V)
24 fconstmpt 5740 . . . . . . . . . 10 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
2524a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0))
26 eqidd 2726 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
2718, 19, 23, 25, 26ofrfval2 7706 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
2816, 27mpbird 256 . . . . . . 7 (𝐹 ∈ dom ∫1 → (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
29 ax-resscn 11202 . . . . . . . . 9 ℝ ⊆ ℂ
3029a1i 11 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ℝ ⊆ ℂ)
3122, 10fnmpti 6699 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) Fn ℝ
3231a1i 11 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) Fn ℝ)
3330, 320pledm 25651 . . . . . . 7 (𝐹 ∈ dom ∫1 → (0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ↔ (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
3428, 33mpbird 256 . . . . . 6 (𝐹 ∈ dom ∫1 → 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
35 itg2itg1 25715 . . . . . 6 (((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
3611, 34, 35syl2anc 582 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
379, 36eqtr3d 2767 . . . 4 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
38 itg1cl 25663 . . . . 5 ((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) ∈ ℝ)
3911, 38syl 17 . . . 4 (𝐹 ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) ∈ ℝ)
4037, 39eqeltrd 2825 . . 3 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))) ∈ ℝ)
415biantrurd 531 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (0 ≤ -(𝐹𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥))))
4241ifbid 4553 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) = if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))
4342mpteq2dva 5249 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0)))
4443fveq2d 6900 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))))
45 neg1rr 12365 . . . . . . . . . . 11 -1 ∈ ℝ
4645a1i 11 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → -1 ∈ ℝ)
47 fconstmpt 5740 . . . . . . . . . . 11 (ℝ × {-1}) = (𝑥 ∈ ℝ ↦ -1)
4847a1i 11 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → (ℝ × {-1}) = (𝑥 ∈ ℝ ↦ -1))
4918, 46, 13, 48, 2offval2 7705 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ((ℝ × {-1}) ∘f · 𝐹) = (𝑥 ∈ ℝ ↦ (-1 · (𝐹𝑥))))
5013recnd 11279 . . . . . . . . . . 11 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℂ)
5150mulm1d 11703 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (-1 · (𝐹𝑥)) = -(𝐹𝑥))
5251mpteq2dva 5249 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (-1 · (𝐹𝑥))) = (𝑥 ∈ ℝ ↦ -(𝐹𝑥)))
5349, 52eqtrd 2765 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {-1}) ∘f · 𝐹) = (𝑥 ∈ ℝ ↦ -(𝐹𝑥)))
54 id 22 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹 ∈ dom ∫1)
5545a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → -1 ∈ ℝ)
5654, 55i1fmulc 25682 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {-1}) ∘f · 𝐹) ∈ dom ∫1)
5753, 56eqeltrrd 2826 . . . . . . 7 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ -(𝐹𝑥)) ∈ dom ∫1)
5857i1fposd 25686 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1)
5913renegcld 11678 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → -(𝐹𝑥) ∈ ℝ)
60 max1 13204 . . . . . . . . . 10 ((0 ∈ ℝ ∧ -(𝐹𝑥) ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
6112, 59, 60sylancr 585 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
6261ralrimiva 3135 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
63 negex 11495 . . . . . . . . . . 11 -(𝐹𝑥) ∈ V
6463, 21ifex 4580 . . . . . . . . . 10 if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) ∈ V
6564a1i 11 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) ∈ V)
66 eqidd 2726 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
6718, 19, 65, 25, 66ofrfval2 7706 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
6862, 67mpbird 256 . . . . . . 7 (𝐹 ∈ dom ∫1 → (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
69 eqid 2725 . . . . . . . . . 10 (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
7064, 69fnmpti 6699 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) Fn ℝ
7170a1i 11 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) Fn ℝ)
7230, 710pledm 25651 . . . . . . 7 (𝐹 ∈ dom ∫1 → (0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ↔ (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
7368, 72mpbird 256 . . . . . 6 (𝐹 ∈ dom ∫1 → 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
74 itg2itg1 25715 . . . . . 6 (((𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
7558, 73, 74syl2anc 582 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
7644, 75eqtr3d 2767 . . . 4 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
77 itg1cl 25663 . . . . 5 ((𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∈ ℝ)
7858, 77syl 17 . . . 4 (𝐹 ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∈ ℝ)
7976, 78eqeltrd 2825 . . 3 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))) ∈ ℝ)
8013iblrelem 25769 . . 3 (𝐹 ∈ dom ∫1 → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ 𝐿1 ↔ ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))) ∈ ℝ)))
814, 40, 79, 80mpbir3and 1339 . 2 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ 𝐿1)
822, 81eqeltrd 2825 1 (𝐹 ∈ dom ∫1𝐹 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461  wss 3944  ifcif 4530  {csn 4630   class class class wbr 5149  cmpt 5232   × cxp 5676  dom cdm 5678   Fn wfn 6544  cfv 6549  (class class class)co 7419  f cof 7683  r cofr 7684  cc 11143  cr 11144  0cc0 11145  1c1 11146   · cmul 11150  cle 11286  -cneg 11482  MblFncmbf 25592  1citg1 25593  2citg2 25594  𝐿1cibl 25595  0𝑝c0p 25647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9671  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223  ax-addf 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9441  df-sup 9472  df-inf 9473  df-oi 9540  df-dju 9931  df-card 9969  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-fl 13798  df-seq 14008  df-exp 14068  df-hash 14331  df-cj 15087  df-re 15088  df-im 15089  df-sqrt 15223  df-abs 15224  df-clim 15473  df-sum 15674  df-rest 17412  df-topgen 17433  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-top 22845  df-topon 22862  df-bases 22898  df-cmp 23340  df-ovol 25442  df-vol 25443  df-mbf 25597  df-itg1 25598  df-itg2 25599  df-ibl 25600  df-0p 25648
This theorem is referenced by:  itgitg1  25787  ftc1anclem4  37302
  Copyright terms: Public domain W3C validator