MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fibl Structured version   Visualization version   GIF version

Theorem i1fibl 24411
Description: A simple function is integrable. (Contributed by Mario Carneiro, 6-Aug-2014.)
Assertion
Ref Expression
i1fibl (𝐹 ∈ dom ∫1𝐹 ∈ 𝐿1)

Proof of Theorem i1fibl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 i1ff 24280 . . 3 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
21feqmptd 6708 . 2 (𝐹 ∈ dom ∫1𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
3 i1fmbf 24279 . . . 4 (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)
42, 3eqeltrrd 2891 . . 3 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ MblFn)
5 simpr 488 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
65biantrurd 536 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥))))
76ifbid 4447 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) = if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))
87mpteq2dva 5125 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0)))
98fveq2d 6649 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))))
10 eqid 2798 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
1110i1fpos 24310 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1)
12 0re 10632 . . . . . . . . . 10 0 ∈ ℝ
131ffvelrnda 6828 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
14 max1 12566 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
1512, 13, 14sylancr 590 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
1615ralrimiva 3149 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
17 reex 10617 . . . . . . . . . 10 ℝ ∈ V
1817a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ℝ ∈ V)
1912a1i 11 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ∈ ℝ)
20 fvex 6658 . . . . . . . . . . 11 (𝐹𝑥) ∈ V
21 c0ex 10624 . . . . . . . . . . 11 0 ∈ V
2220, 21ifex 4473 . . . . . . . . . 10 if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∈ V
2322a1i 11 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∈ V)
24 fconstmpt 5578 . . . . . . . . . 10 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
2524a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0))
26 eqidd 2799 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
2718, 19, 23, 25, 26ofrfval2 7407 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
2816, 27mpbird 260 . . . . . . 7 (𝐹 ∈ dom ∫1 → (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
29 ax-resscn 10583 . . . . . . . . 9 ℝ ⊆ ℂ
3029a1i 11 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ℝ ⊆ ℂ)
3122, 10fnmpti 6463 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) Fn ℝ
3231a1i 11 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) Fn ℝ)
3330, 320pledm 24277 . . . . . . 7 (𝐹 ∈ dom ∫1 → (0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ↔ (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
3428, 33mpbird 260 . . . . . 6 (𝐹 ∈ dom ∫1 → 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
35 itg2itg1 24340 . . . . . 6 (((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
3611, 34, 35syl2anc 587 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
379, 36eqtr3d 2835 . . . 4 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
38 itg1cl 24289 . . . . 5 ((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) ∈ ℝ)
3911, 38syl 17 . . . 4 (𝐹 ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) ∈ ℝ)
4037, 39eqeltrd 2890 . . 3 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))) ∈ ℝ)
415biantrurd 536 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (0 ≤ -(𝐹𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥))))
4241ifbid 4447 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) = if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))
4342mpteq2dva 5125 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0)))
4443fveq2d 6649 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))))
45 neg1rr 11740 . . . . . . . . . . 11 -1 ∈ ℝ
4645a1i 11 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → -1 ∈ ℝ)
47 fconstmpt 5578 . . . . . . . . . . 11 (ℝ × {-1}) = (𝑥 ∈ ℝ ↦ -1)
4847a1i 11 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → (ℝ × {-1}) = (𝑥 ∈ ℝ ↦ -1))
4918, 46, 13, 48, 2offval2 7406 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ((ℝ × {-1}) ∘f · 𝐹) = (𝑥 ∈ ℝ ↦ (-1 · (𝐹𝑥))))
5013recnd 10658 . . . . . . . . . . 11 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℂ)
5150mulm1d 11081 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (-1 · (𝐹𝑥)) = -(𝐹𝑥))
5251mpteq2dva 5125 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (-1 · (𝐹𝑥))) = (𝑥 ∈ ℝ ↦ -(𝐹𝑥)))
5349, 52eqtrd 2833 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {-1}) ∘f · 𝐹) = (𝑥 ∈ ℝ ↦ -(𝐹𝑥)))
54 id 22 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹 ∈ dom ∫1)
5545a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → -1 ∈ ℝ)
5654, 55i1fmulc 24307 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {-1}) ∘f · 𝐹) ∈ dom ∫1)
5753, 56eqeltrrd 2891 . . . . . . 7 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ -(𝐹𝑥)) ∈ dom ∫1)
5857i1fposd 24311 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1)
5913renegcld 11056 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → -(𝐹𝑥) ∈ ℝ)
60 max1 12566 . . . . . . . . . 10 ((0 ∈ ℝ ∧ -(𝐹𝑥) ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
6112, 59, 60sylancr 590 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
6261ralrimiva 3149 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
63 negex 10873 . . . . . . . . . . 11 -(𝐹𝑥) ∈ V
6463, 21ifex 4473 . . . . . . . . . 10 if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) ∈ V
6564a1i 11 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) ∈ V)
66 eqidd 2799 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
6718, 19, 65, 25, 66ofrfval2 7407 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
6862, 67mpbird 260 . . . . . . 7 (𝐹 ∈ dom ∫1 → (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
69 eqid 2798 . . . . . . . . . 10 (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
7064, 69fnmpti 6463 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) Fn ℝ
7170a1i 11 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) Fn ℝ)
7230, 710pledm 24277 . . . . . . 7 (𝐹 ∈ dom ∫1 → (0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ↔ (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
7368, 72mpbird 260 . . . . . 6 (𝐹 ∈ dom ∫1 → 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
74 itg2itg1 24340 . . . . . 6 (((𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
7558, 73, 74syl2anc 587 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
7644, 75eqtr3d 2835 . . . 4 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
77 itg1cl 24289 . . . . 5 ((𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∈ ℝ)
7858, 77syl 17 . . . 4 (𝐹 ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∈ ℝ)
7976, 78eqeltrd 2890 . . 3 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))) ∈ ℝ)
8013iblrelem 24394 . . 3 (𝐹 ∈ dom ∫1 → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ 𝐿1 ↔ ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))) ∈ ℝ)))
814, 40, 79, 80mpbir3and 1339 . 2 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ 𝐿1)
822, 81eqeltrd 2890 1 (𝐹 ∈ dom ∫1𝐹 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  wss 3881  ifcif 4425  {csn 4525   class class class wbr 5030  cmpt 5110   × cxp 5517  dom cdm 5519   Fn wfn 6319  cfv 6324  (class class class)co 7135  f cof 7387  r cofr 7388  cc 10524  cr 10525  0cc0 10526  1c1 10527   · cmul 10531  cle 10665  -cneg 10860  MblFncmbf 24218  1citg1 24219  2citg2 24220  𝐿1cibl 24221  0𝑝c0p 24273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-rest 16688  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-cmp 21992  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-ibl 24226  df-0p 24274
This theorem is referenced by:  itgitg1  24412  ftc1anclem4  35133
  Copyright terms: Public domain W3C validator