MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  i1fibl Structured version   Visualization version   GIF version

Theorem i1fibl 24011
Description: A simple function is integrable. (Contributed by Mario Carneiro, 6-Aug-2014.)
Assertion
Ref Expression
i1fibl (𝐹 ∈ dom ∫1𝐹 ∈ 𝐿1)

Proof of Theorem i1fibl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 i1ff 23880 . . 3 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
21feqmptd 6509 . 2 (𝐹 ∈ dom ∫1𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
3 i1fmbf 23879 . . . 4 (𝐹 ∈ dom ∫1𝐹 ∈ MblFn)
42, 3eqeltrrd 2860 . . 3 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ MblFn)
5 simpr 479 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
65biantrurd 528 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥))))
76ifbid 4329 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) = if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))
87mpteq2dva 4979 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0)))
98fveq2d 6450 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))))
10 eqid 2778 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
1110i1fpos 23910 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1)
12 0re 10378 . . . . . . . . . 10 0 ∈ ℝ
131ffvelrnda 6623 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
14 max1 12328 . . . . . . . . . 10 ((0 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
1512, 13, 14sylancr 581 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
1615ralrimiva 3148 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
17 reex 10363 . . . . . . . . . 10 ℝ ∈ V
1817a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ℝ ∈ V)
1912a1i 11 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ∈ ℝ)
20 fvex 6459 . . . . . . . . . . 11 (𝐹𝑥) ∈ V
21 c0ex 10370 . . . . . . . . . . 11 0 ∈ V
2220, 21ifex 4355 . . . . . . . . . 10 if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∈ V
2322a1i 11 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∈ V)
24 fconstmpt 5411 . . . . . . . . . 10 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
2524a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0))
26 eqidd 2779 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
2718, 19, 23, 25, 26ofrfval2 7192 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {0}) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
2816, 27mpbird 249 . . . . . . 7 (𝐹 ∈ dom ∫1 → (ℝ × {0}) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
29 ax-resscn 10329 . . . . . . . . 9 ℝ ⊆ ℂ
3029a1i 11 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ℝ ⊆ ℂ)
3122, 10fnmpti 6268 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) Fn ℝ
3231a1i 11 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) Fn ℝ)
3330, 320pledm 23877 . . . . . . 7 (𝐹 ∈ dom ∫1 → (0𝑝𝑟 ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ↔ (ℝ × {0}) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
3428, 33mpbird 249 . . . . . 6 (𝐹 ∈ dom ∫1 → 0𝑝𝑟 ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
35 itg2itg1 23940 . . . . . 6 (((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1 ∧ 0𝑝𝑟 ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
3611, 34, 35syl2anc 579 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
379, 36eqtr3d 2816 . . . 4 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
38 itg1cl 23889 . . . . 5 ((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) ∈ ℝ)
3911, 38syl 17 . . . 4 (𝐹 ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) ∈ ℝ)
4037, 39eqeltrd 2859 . . 3 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))) ∈ ℝ)
415biantrurd 528 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (0 ≤ -(𝐹𝑥) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥))))
4241ifbid 4329 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) = if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))
4342mpteq2dva 4979 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0)))
4443fveq2d 6450 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))))
45 neg1rr 11497 . . . . . . . . . . 11 -1 ∈ ℝ
4645a1i 11 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → -1 ∈ ℝ)
47 fconstmpt 5411 . . . . . . . . . . 11 (ℝ × {-1}) = (𝑥 ∈ ℝ ↦ -1)
4847a1i 11 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → (ℝ × {-1}) = (𝑥 ∈ ℝ ↦ -1))
4918, 46, 13, 48, 2offval2 7191 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ((ℝ × {-1}) ∘𝑓 · 𝐹) = (𝑥 ∈ ℝ ↦ (-1 · (𝐹𝑥))))
5013recnd 10405 . . . . . . . . . . 11 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℂ)
5150mulm1d 10827 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (-1 · (𝐹𝑥)) = -(𝐹𝑥))
5251mpteq2dva 4979 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (-1 · (𝐹𝑥))) = (𝑥 ∈ ℝ ↦ -(𝐹𝑥)))
5349, 52eqtrd 2814 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {-1}) ∘𝑓 · 𝐹) = (𝑥 ∈ ℝ ↦ -(𝐹𝑥)))
54 id 22 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹 ∈ dom ∫1)
5545a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → -1 ∈ ℝ)
5654, 55i1fmulc 23907 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {-1}) ∘𝑓 · 𝐹) ∈ dom ∫1)
5753, 56eqeltrrd 2860 . . . . . . 7 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ -(𝐹𝑥)) ∈ dom ∫1)
5857i1fposd 23911 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1)
5913renegcld 10802 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → -(𝐹𝑥) ∈ ℝ)
60 max1 12328 . . . . . . . . . 10 ((0 ∈ ℝ ∧ -(𝐹𝑥) ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
6112, 59, 60sylancr 581 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
6261ralrimiva 3148 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
63 negex 10620 . . . . . . . . . . 11 -(𝐹𝑥) ∈ V
6463, 21ifex 4355 . . . . . . . . . 10 if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) ∈ V
6564a1i 11 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) ∈ V)
66 eqidd 2779 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
6718, 19, 65, 25, 66ofrfval2 7192 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {0}) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
6862, 67mpbird 249 . . . . . . 7 (𝐹 ∈ dom ∫1 → (ℝ × {0}) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
69 eqid 2778 . . . . . . . . . 10 (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
7064, 69fnmpti 6268 . . . . . . . . 9 (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) Fn ℝ
7170a1i 11 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) Fn ℝ)
7230, 710pledm 23877 . . . . . . 7 (𝐹 ∈ dom ∫1 → (0𝑝𝑟 ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ↔ (ℝ × {0}) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
7368, 72mpbird 249 . . . . . 6 (𝐹 ∈ dom ∫1 → 0𝑝𝑟 ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
74 itg2itg1 23940 . . . . . 6 (((𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1 ∧ 0𝑝𝑟 ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
7558, 73, 74syl2anc 579 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
7644, 75eqtr3d 2816 . . . 4 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
77 itg1cl 23889 . . . . 5 ((𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∈ ℝ)
7858, 77syl 17 . . . 4 (𝐹 ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) ∈ ℝ)
7976, 78eqeltrd 2859 . . 3 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))) ∈ ℝ)
8013iblrelem 23994 . . 3 (𝐹 ∈ dom ∫1 → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ 𝐿1 ↔ ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)), (𝐹𝑥), 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ ℝ ∧ 0 ≤ -(𝐹𝑥)), -(𝐹𝑥), 0))) ∈ ℝ)))
814, 40, 79, 80mpbir3and 1399 . 2 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ 𝐿1)
822, 81eqeltrd 2859 1 (𝐹 ∈ dom ∫1𝐹 ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wral 3090  Vcvv 3398  wss 3792  ifcif 4307  {csn 4398   class class class wbr 4886  cmpt 4965   × cxp 5353  dom cdm 5355   Fn wfn 6130  cfv 6135  (class class class)co 6922  𝑓 cof 7172  𝑟 cofr 7173  cc 10270  cr 10271  0cc0 10272  1c1 10273   · cmul 10277  cle 10412  -cneg 10607  MblFncmbf 23818  1citg1 23819  2citg2 23820  𝐿1cibl 23821  0𝑝c0p 23873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-disj 4855  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-ofr 7175  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-rest 16469  df-topgen 16490  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-top 21106  df-topon 21123  df-bases 21158  df-cmp 21599  df-ovol 23668  df-vol 23669  df-mbf 23823  df-itg1 23824  df-itg2 23825  df-ibl 23826  df-0p 23874
This theorem is referenced by:  itgitg1  24012  ftc1anclem4  34115
  Copyright terms: Public domain W3C validator