Step | Hyp | Ref
| Expression |
1 | | i1ff 25056 |
. . 3
β’ (πΉ β dom β«1
β πΉ:ββΆβ) |
2 | 1 | feqmptd 6915 |
. 2
β’ (πΉ β dom β«1
β πΉ = (π₯ β β β¦ (πΉβπ₯))) |
3 | | i1fmbf 25055 |
. . . 4
β’ (πΉ β dom β«1
β πΉ β
MblFn) |
4 | 2, 3 | eqeltrrd 2839 |
. . 3
β’ (πΉ β dom β«1
β (π₯ β β
β¦ (πΉβπ₯)) β
MblFn) |
5 | | simpr 486 |
. . . . . . . . 9
β’ ((πΉ β dom β«1
β§ π₯ β β)
β π₯ β
β) |
6 | 5 | biantrurd 534 |
. . . . . . . 8
β’ ((πΉ β dom β«1
β§ π₯ β β)
β (0 β€ (πΉβπ₯) β (π₯ β β β§ 0 β€ (πΉβπ₯)))) |
7 | 6 | ifbid 4514 |
. . . . . . 7
β’ ((πΉ β dom β«1
β§ π₯ β β)
β if(0 β€ (πΉβπ₯), (πΉβπ₯), 0) = if((π₯ β β β§ 0 β€ (πΉβπ₯)), (πΉβπ₯), 0)) |
8 | 7 | mpteq2dva 5210 |
. . . . . 6
β’ (πΉ β dom β«1
β (π₯ β β
β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0)) = (π₯ β β β¦ if((π₯ β β β§ 0 β€
(πΉβπ₯)), (πΉβπ₯), 0))) |
9 | 8 | fveq2d 6851 |
. . . . 5
β’ (πΉ β dom β«1
β (β«2β(π₯ β β β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0))) = (β«2β(π₯ β β β¦
if((π₯ β β β§
0 β€ (πΉβπ₯)), (πΉβπ₯), 0)))) |
10 | | eqid 2737 |
. . . . . . 7
β’ (π₯ β β β¦ if(0
β€ (πΉβπ₯), (πΉβπ₯), 0)) = (π₯ β β β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0)) |
11 | 10 | i1fpos 25087 |
. . . . . 6
β’ (πΉ β dom β«1
β (π₯ β β
β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0)) β dom
β«1) |
12 | | 0re 11164 |
. . . . . . . . . 10
β’ 0 β
β |
13 | 1 | ffvelcdmda 7040 |
. . . . . . . . . 10
β’ ((πΉ β dom β«1
β§ π₯ β β)
β (πΉβπ₯) β
β) |
14 | | max1 13111 |
. . . . . . . . . 10
β’ ((0
β β β§ (πΉβπ₯) β β) β 0 β€ if(0 β€
(πΉβπ₯), (πΉβπ₯), 0)) |
15 | 12, 13, 14 | sylancr 588 |
. . . . . . . . 9
β’ ((πΉ β dom β«1
β§ π₯ β β)
β 0 β€ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0)) |
16 | 15 | ralrimiva 3144 |
. . . . . . . 8
β’ (πΉ β dom β«1
β βπ₯ β
β 0 β€ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0)) |
17 | | reex 11149 |
. . . . . . . . . 10
β’ β
β V |
18 | 17 | a1i 11 |
. . . . . . . . 9
β’ (πΉ β dom β«1
β β β V) |
19 | 12 | a1i 11 |
. . . . . . . . 9
β’ ((πΉ β dom β«1
β§ π₯ β β)
β 0 β β) |
20 | | fvex 6860 |
. . . . . . . . . . 11
β’ (πΉβπ₯) β V |
21 | | c0ex 11156 |
. . . . . . . . . . 11
β’ 0 β
V |
22 | 20, 21 | ifex 4541 |
. . . . . . . . . 10
β’ if(0 β€
(πΉβπ₯), (πΉβπ₯), 0) β V |
23 | 22 | a1i 11 |
. . . . . . . . 9
β’ ((πΉ β dom β«1
β§ π₯ β β)
β if(0 β€ (πΉβπ₯), (πΉβπ₯), 0) β V) |
24 | | fconstmpt 5699 |
. . . . . . . . . 10
β’ (β
Γ {0}) = (π₯ β
β β¦ 0) |
25 | 24 | a1i 11 |
. . . . . . . . 9
β’ (πΉ β dom β«1
β (β Γ {0}) = (π₯ β β β¦ 0)) |
26 | | eqidd 2738 |
. . . . . . . . 9
β’ (πΉ β dom β«1
β (π₯ β β
β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0)) = (π₯ β β β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0))) |
27 | 18, 19, 23, 25, 26 | ofrfval2 7643 |
. . . . . . . 8
β’ (πΉ β dom β«1
β ((β Γ {0}) βr β€ (π₯ β β β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0)) β βπ₯ β β 0 β€ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0))) |
28 | 16, 27 | mpbird 257 |
. . . . . . 7
β’ (πΉ β dom β«1
β (β Γ {0}) βr β€ (π₯ β β β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0))) |
29 | | ax-resscn 11115 |
. . . . . . . . 9
β’ β
β β |
30 | 29 | a1i 11 |
. . . . . . . 8
β’ (πΉ β dom β«1
β β β β) |
31 | 22, 10 | fnmpti 6649 |
. . . . . . . . 9
β’ (π₯ β β β¦ if(0
β€ (πΉβπ₯), (πΉβπ₯), 0)) Fn β |
32 | 31 | a1i 11 |
. . . . . . . 8
β’ (πΉ β dom β«1
β (π₯ β β
β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0)) Fn β) |
33 | 30, 32 | 0pledm 25053 |
. . . . . . 7
β’ (πΉ β dom β«1
β (0π βr β€ (π₯ β β β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0)) β (β Γ {0})
βr β€ (π₯
β β β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0)))) |
34 | 28, 33 | mpbird 257 |
. . . . . 6
β’ (πΉ β dom β«1
β 0π βr β€ (π₯ β β β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0))) |
35 | | itg2itg1 25117 |
. . . . . 6
β’ (((π₯ β β β¦ if(0
β€ (πΉβπ₯), (πΉβπ₯), 0)) β dom β«1 β§
0π βr β€ (π₯ β β β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0))) β
(β«2β(π₯
β β β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0))) = (β«1β(π₯ β β β¦ if(0
β€ (πΉβπ₯), (πΉβπ₯), 0)))) |
36 | 11, 34, 35 | syl2anc 585 |
. . . . 5
β’ (πΉ β dom β«1
β (β«2β(π₯ β β β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0))) = (β«1β(π₯ β β β¦ if(0
β€ (πΉβπ₯), (πΉβπ₯), 0)))) |
37 | 9, 36 | eqtr3d 2779 |
. . . 4
β’ (πΉ β dom β«1
β (β«2β(π₯ β β β¦ if((π₯ β β β§ 0 β€
(πΉβπ₯)), (πΉβπ₯), 0))) = (β«1β(π₯ β β β¦ if(0
β€ (πΉβπ₯), (πΉβπ₯), 0)))) |
38 | | itg1cl 25065 |
. . . . 5
β’ ((π₯ β β β¦ if(0
β€ (πΉβπ₯), (πΉβπ₯), 0)) β dom β«1 β
(β«1β(π₯
β β β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0))) β β) |
39 | 11, 38 | syl 17 |
. . . 4
β’ (πΉ β dom β«1
β (β«1β(π₯ β β β¦ if(0 β€ (πΉβπ₯), (πΉβπ₯), 0))) β β) |
40 | 37, 39 | eqeltrd 2838 |
. . 3
β’ (πΉ β dom β«1
β (β«2β(π₯ β β β¦ if((π₯ β β β§ 0 β€
(πΉβπ₯)), (πΉβπ₯), 0))) β β) |
41 | 5 | biantrurd 534 |
. . . . . . . 8
β’ ((πΉ β dom β«1
β§ π₯ β β)
β (0 β€ -(πΉβπ₯) β (π₯ β β β§ 0 β€ -(πΉβπ₯)))) |
42 | 41 | ifbid 4514 |
. . . . . . 7
β’ ((πΉ β dom β«1
β§ π₯ β β)
β if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0) = if((π₯ β β β§ 0 β€ -(πΉβπ₯)), -(πΉβπ₯), 0)) |
43 | 42 | mpteq2dva 5210 |
. . . . . 6
β’ (πΉ β dom β«1
β (π₯ β β
β¦ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0)) = (π₯ β β β¦ if((π₯ β β β§ 0 β€
-(πΉβπ₯)), -(πΉβπ₯), 0))) |
44 | 43 | fveq2d 6851 |
. . . . 5
β’ (πΉ β dom β«1
β (β«2β(π₯ β β β¦ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0))) = (β«2β(π₯ β β β¦
if((π₯ β β β§
0 β€ -(πΉβπ₯)), -(πΉβπ₯), 0)))) |
45 | | neg1rr 12275 |
. . . . . . . . . . 11
β’ -1 β
β |
46 | 45 | a1i 11 |
. . . . . . . . . 10
β’ ((πΉ β dom β«1
β§ π₯ β β)
β -1 β β) |
47 | | fconstmpt 5699 |
. . . . . . . . . . 11
β’ (β
Γ {-1}) = (π₯ β
β β¦ -1) |
48 | 47 | a1i 11 |
. . . . . . . . . 10
β’ (πΉ β dom β«1
β (β Γ {-1}) = (π₯ β β β¦ -1)) |
49 | 18, 46, 13, 48, 2 | offval2 7642 |
. . . . . . . . 9
β’ (πΉ β dom β«1
β ((β Γ {-1}) βf Β· πΉ) = (π₯ β β β¦ (-1 Β· (πΉβπ₯)))) |
50 | 13 | recnd 11190 |
. . . . . . . . . . 11
β’ ((πΉ β dom β«1
β§ π₯ β β)
β (πΉβπ₯) β
β) |
51 | 50 | mulm1d 11614 |
. . . . . . . . . 10
β’ ((πΉ β dom β«1
β§ π₯ β β)
β (-1 Β· (πΉβπ₯)) = -(πΉβπ₯)) |
52 | 51 | mpteq2dva 5210 |
. . . . . . . . 9
β’ (πΉ β dom β«1
β (π₯ β β
β¦ (-1 Β· (πΉβπ₯))) = (π₯ β β β¦ -(πΉβπ₯))) |
53 | 49, 52 | eqtrd 2777 |
. . . . . . . 8
β’ (πΉ β dom β«1
β ((β Γ {-1}) βf Β· πΉ) = (π₯ β β β¦ -(πΉβπ₯))) |
54 | | id 22 |
. . . . . . . . 9
β’ (πΉ β dom β«1
β πΉ β dom
β«1) |
55 | 45 | a1i 11 |
. . . . . . . . 9
β’ (πΉ β dom β«1
β -1 β β) |
56 | 54, 55 | i1fmulc 25084 |
. . . . . . . 8
β’ (πΉ β dom β«1
β ((β Γ {-1}) βf Β· πΉ) β dom
β«1) |
57 | 53, 56 | eqeltrrd 2839 |
. . . . . . 7
β’ (πΉ β dom β«1
β (π₯ β β
β¦ -(πΉβπ₯)) β dom
β«1) |
58 | 57 | i1fposd 25088 |
. . . . . 6
β’ (πΉ β dom β«1
β (π₯ β β
β¦ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0)) β dom
β«1) |
59 | 13 | renegcld 11589 |
. . . . . . . . . 10
β’ ((πΉ β dom β«1
β§ π₯ β β)
β -(πΉβπ₯) β
β) |
60 | | max1 13111 |
. . . . . . . . . 10
β’ ((0
β β β§ -(πΉβπ₯) β β) β 0 β€ if(0 β€
-(πΉβπ₯), -(πΉβπ₯), 0)) |
61 | 12, 59, 60 | sylancr 588 |
. . . . . . . . 9
β’ ((πΉ β dom β«1
β§ π₯ β β)
β 0 β€ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0)) |
62 | 61 | ralrimiva 3144 |
. . . . . . . 8
β’ (πΉ β dom β«1
β βπ₯ β
β 0 β€ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0)) |
63 | | negex 11406 |
. . . . . . . . . . 11
β’ -(πΉβπ₯) β V |
64 | 63, 21 | ifex 4541 |
. . . . . . . . . 10
β’ if(0 β€
-(πΉβπ₯), -(πΉβπ₯), 0) β V |
65 | 64 | a1i 11 |
. . . . . . . . 9
β’ ((πΉ β dom β«1
β§ π₯ β β)
β if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0) β V) |
66 | | eqidd 2738 |
. . . . . . . . 9
β’ (πΉ β dom β«1
β (π₯ β β
β¦ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0)) = (π₯ β β β¦ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0))) |
67 | 18, 19, 65, 25, 66 | ofrfval2 7643 |
. . . . . . . 8
β’ (πΉ β dom β«1
β ((β Γ {0}) βr β€ (π₯ β β β¦ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0)) β βπ₯ β β 0 β€ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0))) |
68 | 62, 67 | mpbird 257 |
. . . . . . 7
β’ (πΉ β dom β«1
β (β Γ {0}) βr β€ (π₯ β β β¦ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0))) |
69 | | eqid 2737 |
. . . . . . . . . 10
β’ (π₯ β β β¦ if(0
β€ -(πΉβπ₯), -(πΉβπ₯), 0)) = (π₯ β β β¦ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0)) |
70 | 64, 69 | fnmpti 6649 |
. . . . . . . . 9
β’ (π₯ β β β¦ if(0
β€ -(πΉβπ₯), -(πΉβπ₯), 0)) Fn β |
71 | 70 | a1i 11 |
. . . . . . . 8
β’ (πΉ β dom β«1
β (π₯ β β
β¦ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0)) Fn β) |
72 | 30, 71 | 0pledm 25053 |
. . . . . . 7
β’ (πΉ β dom β«1
β (0π βr β€ (π₯ β β β¦ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0)) β (β Γ {0})
βr β€ (π₯
β β β¦ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0)))) |
73 | 68, 72 | mpbird 257 |
. . . . . 6
β’ (πΉ β dom β«1
β 0π βr β€ (π₯ β β β¦ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0))) |
74 | | itg2itg1 25117 |
. . . . . 6
β’ (((π₯ β β β¦ if(0
β€ -(πΉβπ₯), -(πΉβπ₯), 0)) β dom β«1 β§
0π βr β€ (π₯ β β β¦ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0))) β
(β«2β(π₯
β β β¦ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0))) = (β«1β(π₯ β β β¦ if(0
β€ -(πΉβπ₯), -(πΉβπ₯), 0)))) |
75 | 58, 73, 74 | syl2anc 585 |
. . . . 5
β’ (πΉ β dom β«1
β (β«2β(π₯ β β β¦ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0))) = (β«1β(π₯ β β β¦ if(0
β€ -(πΉβπ₯), -(πΉβπ₯), 0)))) |
76 | 44, 75 | eqtr3d 2779 |
. . . 4
β’ (πΉ β dom β«1
β (β«2β(π₯ β β β¦ if((π₯ β β β§ 0 β€
-(πΉβπ₯)), -(πΉβπ₯), 0))) = (β«1β(π₯ β β β¦ if(0
β€ -(πΉβπ₯), -(πΉβπ₯), 0)))) |
77 | | itg1cl 25065 |
. . . . 5
β’ ((π₯ β β β¦ if(0
β€ -(πΉβπ₯), -(πΉβπ₯), 0)) β dom β«1 β
(β«1β(π₯
β β β¦ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0))) β β) |
78 | 58, 77 | syl 17 |
. . . 4
β’ (πΉ β dom β«1
β (β«1β(π₯ β β β¦ if(0 β€ -(πΉβπ₯), -(πΉβπ₯), 0))) β β) |
79 | 76, 78 | eqeltrd 2838 |
. . 3
β’ (πΉ β dom β«1
β (β«2β(π₯ β β β¦ if((π₯ β β β§ 0 β€
-(πΉβπ₯)), -(πΉβπ₯), 0))) β β) |
80 | 13 | iblrelem 25171 |
. . 3
β’ (πΉ β dom β«1
β ((π₯ β β
β¦ (πΉβπ₯)) β πΏ1
β ((π₯ β β
β¦ (πΉβπ₯)) β MblFn β§
(β«2β(π₯
β β β¦ if((π₯ β β β§ 0 β€ (πΉβπ₯)), (πΉβπ₯), 0))) β β β§
(β«2β(π₯
β β β¦ if((π₯ β β β§ 0 β€ -(πΉβπ₯)), -(πΉβπ₯), 0))) β β))) |
81 | 4, 40, 79, 80 | mpbir3and 1343 |
. 2
β’ (πΉ β dom β«1
β (π₯ β β
β¦ (πΉβπ₯)) β
πΏ1) |
82 | 2, 81 | eqeltrd 2838 |
1
β’ (πΉ β dom β«1
β πΉ β
πΏ1) |