MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmullem2 Structured version   Visualization version   GIF version

Theorem mbfmullem2 24317
Description: Lemma for mbfmul 24319. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfmul.1 (𝜑𝐹 ∈ MblFn)
mbfmul.2 (𝜑𝐺 ∈ MblFn)
mbfmul.3 (𝜑𝐹:𝐴⟶ℝ)
mbfmul.4 (𝜑𝐺:𝐴⟶ℝ)
mbfmul.5 (𝜑𝑃:ℕ⟶dom ∫1)
mbfmul.6 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
mbfmul.7 (𝜑𝑄:ℕ⟶dom ∫1)
mbfmul.8 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥)) ⇝ (𝐺𝑥))
Assertion
Ref Expression
mbfmullem2 (𝜑 → (𝐹f · 𝐺) ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝐴   𝑃,𝑛,𝑥   𝜑,𝑛,𝑥   𝑄,𝑛,𝑥   𝑛,𝐹,𝑥   𝑛,𝐺,𝑥

Proof of Theorem mbfmullem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 mbfmul.3 . . . 4 (𝜑𝐹:𝐴⟶ℝ)
21ffnd 6508 . . 3 (𝜑𝐹 Fn 𝐴)
3 mbfmul.4 . . . 4 (𝜑𝐺:𝐴⟶ℝ)
43ffnd 6508 . . 3 (𝜑𝐺 Fn 𝐴)
51fdmd 6516 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
6 mbfmul.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
7 mbfdm 24219 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
86, 7syl 17 . . . 4 (𝜑 → dom 𝐹 ∈ dom vol)
95, 8eqeltrrd 2912 . . 3 (𝜑𝐴 ∈ dom vol)
10 inidm 4193 . . 3 (𝐴𝐴) = 𝐴
11 eqidd 2820 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
12 eqidd 2820 . . 3 ((𝜑𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
132, 4, 9, 9, 10, 11, 12offval 7408 . 2 (𝜑 → (𝐹f · 𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥) · (𝐺𝑥))))
14 nnuz 12273 . . 3 ℕ = (ℤ‘1)
15 1zzd 12005 . . 3 (𝜑 → 1 ∈ ℤ)
16 1zzd 12005 . . . 4 ((𝜑𝑥𝐴) → 1 ∈ ℤ)
17 mbfmul.6 . . . 4 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
18 nnex 11636 . . . . . 6 ℕ ∈ V
1918mptex 6978 . . . . 5 (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ V
2019a1i 11 . . . 4 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ V)
21 mbfmul.8 . . . 4 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥)) ⇝ (𝐺𝑥))
22 mbfmul.5 . . . . . . . . . . 11 (𝜑𝑃:ℕ⟶dom ∫1)
2322ffvelrnda 6844 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑃𝑛) ∈ dom ∫1)
24 i1ff 24269 . . . . . . . . . 10 ((𝑃𝑛) ∈ dom ∫1 → (𝑃𝑛):ℝ⟶ℝ)
2523, 24syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑃𝑛):ℝ⟶ℝ)
2625adantlr 713 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → (𝑃𝑛):ℝ⟶ℝ)
27 mblss 24124 . . . . . . . . . . 11 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
289, 27syl 17 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
2928sselda 3965 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
3029adantr 483 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
3126, 30ffvelrnd 6845 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑃𝑛)‘𝑥) ∈ ℝ)
3231recnd 10661 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑃𝑛)‘𝑥) ∈ ℂ)
3332fmpttd 6872 . . . . 5 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)):ℕ⟶ℂ)
3433ffvelrnda 6844 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) ∈ ℂ)
35 mbfmul.7 . . . . . . . . . . 11 (𝜑𝑄:ℕ⟶dom ∫1)
3635ffvelrnda 6844 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑄𝑛) ∈ dom ∫1)
37 i1ff 24269 . . . . . . . . . 10 ((𝑄𝑛) ∈ dom ∫1 → (𝑄𝑛):ℝ⟶ℝ)
3836, 37syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑄𝑛):ℝ⟶ℝ)
3938adantlr 713 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → (𝑄𝑛):ℝ⟶ℝ)
4039, 30ffvelrnd 6845 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑄𝑛)‘𝑥) ∈ ℝ)
4140recnd 10661 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑄𝑛)‘𝑥) ∈ ℂ)
4241fmpttd 6872 . . . . 5 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥)):ℕ⟶ℂ)
4342ffvelrnda 6844 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘) ∈ ℂ)
44 fveq2 6663 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑃𝑛) = (𝑃𝑘))
4544fveq1d 6665 . . . . . . . 8 (𝑛 = 𝑘 → ((𝑃𝑛)‘𝑥) = ((𝑃𝑘)‘𝑥))
46 fveq2 6663 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑄𝑛) = (𝑄𝑘))
4746fveq1d 6665 . . . . . . . 8 (𝑛 = 𝑘 → ((𝑄𝑛)‘𝑥) = ((𝑄𝑘)‘𝑥))
4845, 47oveq12d 7166 . . . . . . 7 (𝑛 = 𝑘 → (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
49 eqid 2819 . . . . . . 7 (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) = (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)))
50 ovex 7181 . . . . . . 7 (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)) ∈ V
5148, 49, 50fvmpt 6761 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)))‘𝑘) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
5251adantl 484 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)))‘𝑘) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
53 eqid 2819 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))
54 fvex 6676 . . . . . . . 8 ((𝑃𝑘)‘𝑥) ∈ V
5545, 53, 54fvmpt 6761 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) = ((𝑃𝑘)‘𝑥))
56 eqid 2819 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))
57 fvex 6676 . . . . . . . 8 ((𝑄𝑘)‘𝑥) ∈ V
5847, 56, 57fvmpt 6761 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘) = ((𝑄𝑘)‘𝑥))
5955, 58oveq12d 7166 . . . . . 6 (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘)) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
6059adantl 484 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘)) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
6152, 60eqtr4d 2857 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)))‘𝑘) = (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘)))
6214, 16, 17, 20, 21, 34, 43, 61climmul 14981 . . 3 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ⇝ ((𝐹𝑥) · (𝐺𝑥)))
6328adantr 483 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
6463resmptd 5901 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ↾ 𝐴) = (𝑥𝐴 ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))))
6525ffnd 6508 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑃𝑛) Fn ℝ)
6638ffnd 6508 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑄𝑛) Fn ℝ)
67 reex 10620 . . . . . . . 8 ℝ ∈ V
6867a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ℝ ∈ V)
69 inidm 4193 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
70 eqidd 2820 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑃𝑛)‘𝑥) = ((𝑃𝑛)‘𝑥))
71 eqidd 2820 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑄𝑛)‘𝑥) = ((𝑄𝑛)‘𝑥))
7265, 66, 68, 68, 69, 70, 71offval 7408 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑃𝑛) ∘f · (𝑄𝑛)) = (𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))))
7323, 36i1fmul 24289 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑃𝑛) ∘f · (𝑄𝑛)) ∈ dom ∫1)
74 i1fmbf 24268 . . . . . . 7 (((𝑃𝑛) ∘f · (𝑄𝑛)) ∈ dom ∫1 → ((𝑃𝑛) ∘f · (𝑄𝑛)) ∈ MblFn)
7573, 74syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑃𝑛) ∘f · (𝑄𝑛)) ∈ MblFn)
7672, 75eqeltrrd 2912 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ MblFn)
779adantr 483 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ dom vol)
78 mbfres 24237 . . . . 5 (((𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ↾ 𝐴) ∈ MblFn)
7976, 77, 78syl2anc 586 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ↾ 𝐴) ∈ MblFn)
8064, 79eqeltrrd 2912 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐴 ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ MblFn)
81 ovex 7181 . . . 4 (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)) ∈ V
8281a1i 11 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑥𝐴)) → (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)) ∈ V)
8314, 15, 62, 80, 82mbflim 24261 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝐹𝑥) · (𝐺𝑥))) ∈ MblFn)
8413, 83eqeltrd 2911 1 (𝜑 → (𝐹f · 𝐺) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1530  wcel 2107  Vcvv 3493  wss 3934   class class class wbr 5057  cmpt 5137  dom cdm 5548  cres 5550  wf 6344  cfv 6348  (class class class)co 7148  f cof 7399  cc 10527  cr 10528  1c1 10530   · cmul 10534  cn 11630  cli 14833  volcvol 24056  MblFncmbf 24207  1citg1 24208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cc 9849  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-disj 5023  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-omul 8099  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-acn 9363  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xadd 12500  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-xmet 20530  df-met 20531  df-ovol 24057  df-vol 24058  df-mbf 24212  df-itg1 24213
This theorem is referenced by:  mbfmullem  24318
  Copyright terms: Public domain W3C validator