MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmullem2 Structured version   Visualization version   GIF version

Theorem mbfmullem2 25578
Description: Lemma for mbfmul 25580. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfmul.1 (𝜑𝐹 ∈ MblFn)
mbfmul.2 (𝜑𝐺 ∈ MblFn)
mbfmul.3 (𝜑𝐹:𝐴⟶ℝ)
mbfmul.4 (𝜑𝐺:𝐴⟶ℝ)
mbfmul.5 (𝜑𝑃:ℕ⟶dom ∫1)
mbfmul.6 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
mbfmul.7 (𝜑𝑄:ℕ⟶dom ∫1)
mbfmul.8 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥)) ⇝ (𝐺𝑥))
Assertion
Ref Expression
mbfmullem2 (𝜑 → (𝐹f · 𝐺) ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝐴   𝑃,𝑛,𝑥   𝜑,𝑛,𝑥   𝑄,𝑛,𝑥   𝑛,𝐹,𝑥   𝑛,𝐺,𝑥

Proof of Theorem mbfmullem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 mbfmul.3 . . . 4 (𝜑𝐹:𝐴⟶ℝ)
21ffnd 6709 . . 3 (𝜑𝐹 Fn 𝐴)
3 mbfmul.4 . . . 4 (𝜑𝐺:𝐴⟶ℝ)
43ffnd 6709 . . 3 (𝜑𝐺 Fn 𝐴)
51fdmd 6719 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
6 mbfmul.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
7 mbfdm 25479 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
86, 7syl 17 . . . 4 (𝜑 → dom 𝐹 ∈ dom vol)
95, 8eqeltrrd 2826 . . 3 (𝜑𝐴 ∈ dom vol)
10 inidm 4211 . . 3 (𝐴𝐴) = 𝐴
11 eqidd 2725 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
12 eqidd 2725 . . 3 ((𝜑𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
132, 4, 9, 9, 10, 11, 12offval 7673 . 2 (𝜑 → (𝐹f · 𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥) · (𝐺𝑥))))
14 nnuz 12863 . . 3 ℕ = (ℤ‘1)
15 1zzd 12591 . . 3 (𝜑 → 1 ∈ ℤ)
16 1zzd 12591 . . . 4 ((𝜑𝑥𝐴) → 1 ∈ ℤ)
17 mbfmul.6 . . . 4 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
18 nnex 12216 . . . . . 6 ℕ ∈ V
1918mptex 7217 . . . . 5 (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ V
2019a1i 11 . . . 4 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ V)
21 mbfmul.8 . . . 4 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥)) ⇝ (𝐺𝑥))
22 mbfmul.5 . . . . . . . . . . 11 (𝜑𝑃:ℕ⟶dom ∫1)
2322ffvelcdmda 7077 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑃𝑛) ∈ dom ∫1)
24 i1ff 25529 . . . . . . . . . 10 ((𝑃𝑛) ∈ dom ∫1 → (𝑃𝑛):ℝ⟶ℝ)
2523, 24syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑃𝑛):ℝ⟶ℝ)
2625adantlr 712 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → (𝑃𝑛):ℝ⟶ℝ)
27 mblss 25384 . . . . . . . . . . 11 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
289, 27syl 17 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
2928sselda 3975 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
3029adantr 480 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
3126, 30ffvelcdmd 7078 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑃𝑛)‘𝑥) ∈ ℝ)
3231recnd 11240 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑃𝑛)‘𝑥) ∈ ℂ)
3332fmpttd 7107 . . . . 5 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)):ℕ⟶ℂ)
3433ffvelcdmda 7077 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) ∈ ℂ)
35 mbfmul.7 . . . . . . . . . . 11 (𝜑𝑄:ℕ⟶dom ∫1)
3635ffvelcdmda 7077 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑄𝑛) ∈ dom ∫1)
37 i1ff 25529 . . . . . . . . . 10 ((𝑄𝑛) ∈ dom ∫1 → (𝑄𝑛):ℝ⟶ℝ)
3836, 37syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑄𝑛):ℝ⟶ℝ)
3938adantlr 712 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → (𝑄𝑛):ℝ⟶ℝ)
4039, 30ffvelcdmd 7078 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑄𝑛)‘𝑥) ∈ ℝ)
4140recnd 11240 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑄𝑛)‘𝑥) ∈ ℂ)
4241fmpttd 7107 . . . . 5 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥)):ℕ⟶ℂ)
4342ffvelcdmda 7077 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘) ∈ ℂ)
44 fveq2 6882 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑃𝑛) = (𝑃𝑘))
4544fveq1d 6884 . . . . . . . 8 (𝑛 = 𝑘 → ((𝑃𝑛)‘𝑥) = ((𝑃𝑘)‘𝑥))
46 fveq2 6882 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑄𝑛) = (𝑄𝑘))
4746fveq1d 6884 . . . . . . . 8 (𝑛 = 𝑘 → ((𝑄𝑛)‘𝑥) = ((𝑄𝑘)‘𝑥))
4845, 47oveq12d 7420 . . . . . . 7 (𝑛 = 𝑘 → (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
49 eqid 2724 . . . . . . 7 (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) = (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)))
50 ovex 7435 . . . . . . 7 (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)) ∈ V
5148, 49, 50fvmpt 6989 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)))‘𝑘) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
5251adantl 481 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)))‘𝑘) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
53 eqid 2724 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))
54 fvex 6895 . . . . . . . 8 ((𝑃𝑘)‘𝑥) ∈ V
5545, 53, 54fvmpt 6989 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) = ((𝑃𝑘)‘𝑥))
56 eqid 2724 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))
57 fvex 6895 . . . . . . . 8 ((𝑄𝑘)‘𝑥) ∈ V
5847, 56, 57fvmpt 6989 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘) = ((𝑄𝑘)‘𝑥))
5955, 58oveq12d 7420 . . . . . 6 (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘)) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
6059adantl 481 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘)) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
6152, 60eqtr4d 2767 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)))‘𝑘) = (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘)))
6214, 16, 17, 20, 21, 34, 43, 61climmul 15575 . . 3 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ⇝ ((𝐹𝑥) · (𝐺𝑥)))
6328adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
6463resmptd 6031 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ↾ 𝐴) = (𝑥𝐴 ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))))
6525ffnd 6709 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑃𝑛) Fn ℝ)
6638ffnd 6709 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑄𝑛) Fn ℝ)
67 reex 11198 . . . . . . . 8 ℝ ∈ V
6867a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ℝ ∈ V)
69 inidm 4211 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
70 eqidd 2725 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑃𝑛)‘𝑥) = ((𝑃𝑛)‘𝑥))
71 eqidd 2725 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑄𝑛)‘𝑥) = ((𝑄𝑛)‘𝑥))
7265, 66, 68, 68, 69, 70, 71offval 7673 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑃𝑛) ∘f · (𝑄𝑛)) = (𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))))
7323, 36i1fmul 25549 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑃𝑛) ∘f · (𝑄𝑛)) ∈ dom ∫1)
74 i1fmbf 25528 . . . . . . 7 (((𝑃𝑛) ∘f · (𝑄𝑛)) ∈ dom ∫1 → ((𝑃𝑛) ∘f · (𝑄𝑛)) ∈ MblFn)
7573, 74syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑃𝑛) ∘f · (𝑄𝑛)) ∈ MblFn)
7672, 75eqeltrrd 2826 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ MblFn)
779adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ dom vol)
78 mbfres 25497 . . . . 5 (((𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ↾ 𝐴) ∈ MblFn)
7976, 77, 78syl2anc 583 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ↾ 𝐴) ∈ MblFn)
8064, 79eqeltrrd 2826 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐴 ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ MblFn)
81 ovex 7435 . . . 4 (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)) ∈ V
8281a1i 11 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑥𝐴)) → (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)) ∈ V)
8314, 15, 62, 80, 82mbflim 25521 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝐹𝑥) · (𝐺𝑥))) ∈ MblFn)
8413, 83eqeltrd 2825 1 (𝜑 → (𝐹f · 𝐺) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  Vcvv 3466  wss 3941   class class class wbr 5139  cmpt 5222  dom cdm 5667  cres 5669  wf 6530  cfv 6534  (class class class)co 7402  f cof 7662  cc 11105  cr 11106  1c1 11108   · cmul 11112  cn 12210  cli 15426  volcvol 25316  MblFncmbf 25467  1citg1 25468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633  ax-cc 10427  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-disj 5105  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-omul 8467  df-er 8700  df-map 8819  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-oi 9502  df-dju 9893  df-card 9931  df-acn 9934  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-n0 12471  df-z 12557  df-uz 12821  df-q 12931  df-rp 12973  df-xadd 13091  df-ioo 13326  df-ioc 13327  df-ico 13328  df-icc 13329  df-fz 13483  df-fzo 13626  df-fl 13755  df-seq 13965  df-exp 14026  df-hash 14289  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15631  df-xmet 21223  df-met 21224  df-ovol 25317  df-vol 25318  df-mbf 25472  df-itg1 25473
This theorem is referenced by:  mbfmullem  25579
  Copyright terms: Public domain W3C validator