MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmullem2 Structured version   Visualization version   GIF version

Theorem mbfmullem2 25652
Description: Lemma for mbfmul 25654. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfmul.1 (𝜑𝐹 ∈ MblFn)
mbfmul.2 (𝜑𝐺 ∈ MblFn)
mbfmul.3 (𝜑𝐹:𝐴⟶ℝ)
mbfmul.4 (𝜑𝐺:𝐴⟶ℝ)
mbfmul.5 (𝜑𝑃:ℕ⟶dom ∫1)
mbfmul.6 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
mbfmul.7 (𝜑𝑄:ℕ⟶dom ∫1)
mbfmul.8 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥)) ⇝ (𝐺𝑥))
Assertion
Ref Expression
mbfmullem2 (𝜑 → (𝐹f · 𝐺) ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝐴   𝑃,𝑛,𝑥   𝜑,𝑛,𝑥   𝑄,𝑛,𝑥   𝑛,𝐹,𝑥   𝑛,𝐺,𝑥

Proof of Theorem mbfmullem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 mbfmul.3 . . . 4 (𝜑𝐹:𝐴⟶ℝ)
21ffnd 6652 . . 3 (𝜑𝐹 Fn 𝐴)
3 mbfmul.4 . . . 4 (𝜑𝐺:𝐴⟶ℝ)
43ffnd 6652 . . 3 (𝜑𝐺 Fn 𝐴)
51fdmd 6661 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
6 mbfmul.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
7 mbfdm 25554 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
86, 7syl 17 . . . 4 (𝜑 → dom 𝐹 ∈ dom vol)
95, 8eqeltrrd 2832 . . 3 (𝜑𝐴 ∈ dom vol)
10 inidm 4174 . . 3 (𝐴𝐴) = 𝐴
11 eqidd 2732 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
12 eqidd 2732 . . 3 ((𝜑𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
132, 4, 9, 9, 10, 11, 12offval 7619 . 2 (𝜑 → (𝐹f · 𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥) · (𝐺𝑥))))
14 nnuz 12775 . . 3 ℕ = (ℤ‘1)
15 1zzd 12503 . . 3 (𝜑 → 1 ∈ ℤ)
16 1zzd 12503 . . . 4 ((𝜑𝑥𝐴) → 1 ∈ ℤ)
17 mbfmul.6 . . . 4 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
18 nnex 12131 . . . . . 6 ℕ ∈ V
1918mptex 7157 . . . . 5 (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ V
2019a1i 11 . . . 4 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ V)
21 mbfmul.8 . . . 4 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥)) ⇝ (𝐺𝑥))
22 mbfmul.5 . . . . . . . . . . 11 (𝜑𝑃:ℕ⟶dom ∫1)
2322ffvelcdmda 7017 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑃𝑛) ∈ dom ∫1)
24 i1ff 25604 . . . . . . . . . 10 ((𝑃𝑛) ∈ dom ∫1 → (𝑃𝑛):ℝ⟶ℝ)
2523, 24syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑃𝑛):ℝ⟶ℝ)
2625adantlr 715 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → (𝑃𝑛):ℝ⟶ℝ)
27 mblss 25459 . . . . . . . . . . 11 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
289, 27syl 17 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
2928sselda 3929 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
3029adantr 480 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
3126, 30ffvelcdmd 7018 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑃𝑛)‘𝑥) ∈ ℝ)
3231recnd 11140 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑃𝑛)‘𝑥) ∈ ℂ)
3332fmpttd 7048 . . . . 5 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)):ℕ⟶ℂ)
3433ffvelcdmda 7017 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) ∈ ℂ)
35 mbfmul.7 . . . . . . . . . . 11 (𝜑𝑄:ℕ⟶dom ∫1)
3635ffvelcdmda 7017 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑄𝑛) ∈ dom ∫1)
37 i1ff 25604 . . . . . . . . . 10 ((𝑄𝑛) ∈ dom ∫1 → (𝑄𝑛):ℝ⟶ℝ)
3836, 37syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑄𝑛):ℝ⟶ℝ)
3938adantlr 715 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → (𝑄𝑛):ℝ⟶ℝ)
4039, 30ffvelcdmd 7018 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑄𝑛)‘𝑥) ∈ ℝ)
4140recnd 11140 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑄𝑛)‘𝑥) ∈ ℂ)
4241fmpttd 7048 . . . . 5 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥)):ℕ⟶ℂ)
4342ffvelcdmda 7017 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘) ∈ ℂ)
44 fveq2 6822 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑃𝑛) = (𝑃𝑘))
4544fveq1d 6824 . . . . . . . 8 (𝑛 = 𝑘 → ((𝑃𝑛)‘𝑥) = ((𝑃𝑘)‘𝑥))
46 fveq2 6822 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑄𝑛) = (𝑄𝑘))
4746fveq1d 6824 . . . . . . . 8 (𝑛 = 𝑘 → ((𝑄𝑛)‘𝑥) = ((𝑄𝑘)‘𝑥))
4845, 47oveq12d 7364 . . . . . . 7 (𝑛 = 𝑘 → (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
49 eqid 2731 . . . . . . 7 (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) = (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)))
50 ovex 7379 . . . . . . 7 (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)) ∈ V
5148, 49, 50fvmpt 6929 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)))‘𝑘) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
5251adantl 481 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)))‘𝑘) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
53 eqid 2731 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))
54 fvex 6835 . . . . . . . 8 ((𝑃𝑘)‘𝑥) ∈ V
5545, 53, 54fvmpt 6929 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) = ((𝑃𝑘)‘𝑥))
56 eqid 2731 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))
57 fvex 6835 . . . . . . . 8 ((𝑄𝑘)‘𝑥) ∈ V
5847, 56, 57fvmpt 6929 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘) = ((𝑄𝑘)‘𝑥))
5955, 58oveq12d 7364 . . . . . 6 (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘)) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
6059adantl 481 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘)) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
6152, 60eqtr4d 2769 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)))‘𝑘) = (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘)))
6214, 16, 17, 20, 21, 34, 43, 61climmul 15540 . . 3 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ⇝ ((𝐹𝑥) · (𝐺𝑥)))
6328adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
6463resmptd 5988 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ↾ 𝐴) = (𝑥𝐴 ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))))
6525ffnd 6652 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑃𝑛) Fn ℝ)
6638ffnd 6652 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑄𝑛) Fn ℝ)
67 reex 11097 . . . . . . . 8 ℝ ∈ V
6867a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ℝ ∈ V)
69 inidm 4174 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
70 eqidd 2732 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑃𝑛)‘𝑥) = ((𝑃𝑛)‘𝑥))
71 eqidd 2732 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑄𝑛)‘𝑥) = ((𝑄𝑛)‘𝑥))
7265, 66, 68, 68, 69, 70, 71offval 7619 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑃𝑛) ∘f · (𝑄𝑛)) = (𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))))
7323, 36i1fmul 25624 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑃𝑛) ∘f · (𝑄𝑛)) ∈ dom ∫1)
74 i1fmbf 25603 . . . . . . 7 (((𝑃𝑛) ∘f · (𝑄𝑛)) ∈ dom ∫1 → ((𝑃𝑛) ∘f · (𝑄𝑛)) ∈ MblFn)
7573, 74syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑃𝑛) ∘f · (𝑄𝑛)) ∈ MblFn)
7672, 75eqeltrrd 2832 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ MblFn)
779adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ dom vol)
78 mbfres 25572 . . . . 5 (((𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ↾ 𝐴) ∈ MblFn)
7976, 77, 78syl2anc 584 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ↾ 𝐴) ∈ MblFn)
8064, 79eqeltrrd 2832 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐴 ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ MblFn)
81 ovex 7379 . . . 4 (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)) ∈ V
8281a1i 11 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑥𝐴)) → (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)) ∈ V)
8314, 15, 62, 80, 82mbflim 25596 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝐹𝑥) · (𝐺𝑥))) ∈ MblFn)
8413, 83eqeltrd 2831 1 (𝜑 → (𝐹f · 𝐺) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897   class class class wbr 5089  cmpt 5170  dom cdm 5614  cres 5616  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  cc 11004  cr 11005  1c1 11007   · cmul 11011  cn 12125  cli 15391  volcvol 25391  MblFncmbf 25542  1citg1 25543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xadd 13012  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-xmet 21284  df-met 21285  df-ovol 25392  df-vol 25393  df-mbf 25547  df-itg1 25548
This theorem is referenced by:  mbfmullem  25653
  Copyright terms: Public domain W3C validator