| Step | Hyp | Ref
| Expression |
| 1 | | mbfmul.3 |
. . . 4
⊢ (𝜑 → 𝐹:𝐴⟶ℝ) |
| 2 | 1 | ffnd 6736 |
. . 3
⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | | mbfmul.4 |
. . . 4
⊢ (𝜑 → 𝐺:𝐴⟶ℝ) |
| 4 | 3 | ffnd 6736 |
. . 3
⊢ (𝜑 → 𝐺 Fn 𝐴) |
| 5 | 1 | fdmd 6745 |
. . . 4
⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 6 | | mbfmul.1 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ MblFn) |
| 7 | | mbfdm 25662 |
. . . . 5
⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom
vol) |
| 8 | 6, 7 | syl 17 |
. . . 4
⊢ (𝜑 → dom 𝐹 ∈ dom vol) |
| 9 | 5, 8 | eqeltrrd 2841 |
. . 3
⊢ (𝜑 → 𝐴 ∈ dom vol) |
| 10 | | inidm 4226 |
. . 3
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 11 | | eqidd 2737 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
| 12 | | eqidd 2737 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐺‘𝑥)) |
| 13 | 2, 4, 9, 9, 10, 11, 12 | offval 7707 |
. 2
⊢ (𝜑 → (𝐹 ∘f · 𝐺) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥)))) |
| 14 | | nnuz 12922 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
| 15 | | 1zzd 12650 |
. . 3
⊢ (𝜑 → 1 ∈
ℤ) |
| 16 | | 1zzd 12650 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 1 ∈ ℤ) |
| 17 | | mbfmul.6 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) |
| 18 | | nnex 12273 |
. . . . . 6
⊢ ℕ
∈ V |
| 19 | 18 | mptex 7244 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦ (((𝑃‘𝑛)‘𝑥) · ((𝑄‘𝑛)‘𝑥))) ∈ V |
| 20 | 19 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ ℕ ↦ (((𝑃‘𝑛)‘𝑥) · ((𝑄‘𝑛)‘𝑥))) ∈ V) |
| 21 | | mbfmul.8 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ ℕ ↦ ((𝑄‘𝑛)‘𝑥)) ⇝ (𝐺‘𝑥)) |
| 22 | | mbfmul.5 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃:ℕ⟶dom
∫1) |
| 23 | 22 | ffvelcdmda 7103 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑃‘𝑛) ∈ dom
∫1) |
| 24 | | i1ff 25712 |
. . . . . . . . . 10
⊢ ((𝑃‘𝑛) ∈ dom ∫1 → (𝑃‘𝑛):ℝ⟶ℝ) |
| 25 | 23, 24 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑃‘𝑛):ℝ⟶ℝ) |
| 26 | 25 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ ℕ) → (𝑃‘𝑛):ℝ⟶ℝ) |
| 27 | | mblss 25567 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ dom vol → 𝐴 ⊆
ℝ) |
| 28 | 9, 27 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 29 | 28 | sselda 3982 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 30 | 29 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ) |
| 31 | 26, 30 | ffvelcdmd 7104 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑃‘𝑛)‘𝑥) ∈ ℝ) |
| 32 | 31 | recnd 11290 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑃‘𝑛)‘𝑥) ∈ ℂ) |
| 33 | 32 | fmpttd 7134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)):ℕ⟶ℂ) |
| 34 | 33 | ffvelcdmda 7103 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥))‘𝑘) ∈ ℂ) |
| 35 | | mbfmul.7 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄:ℕ⟶dom
∫1) |
| 36 | 35 | ffvelcdmda 7103 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑄‘𝑛) ∈ dom
∫1) |
| 37 | | i1ff 25712 |
. . . . . . . . . 10
⊢ ((𝑄‘𝑛) ∈ dom ∫1 → (𝑄‘𝑛):ℝ⟶ℝ) |
| 38 | 36, 37 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑄‘𝑛):ℝ⟶ℝ) |
| 39 | 38 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ ℕ) → (𝑄‘𝑛):ℝ⟶ℝ) |
| 40 | 39, 30 | ffvelcdmd 7104 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑄‘𝑛)‘𝑥) ∈ ℝ) |
| 41 | 40 | recnd 11290 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑄‘𝑛)‘𝑥) ∈ ℂ) |
| 42 | 41 | fmpttd 7134 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ ℕ ↦ ((𝑄‘𝑛)‘𝑥)):ℕ⟶ℂ) |
| 43 | 42 | ffvelcdmda 7103 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑄‘𝑛)‘𝑥))‘𝑘) ∈ ℂ) |
| 44 | | fveq2 6905 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (𝑃‘𝑛) = (𝑃‘𝑘)) |
| 45 | 44 | fveq1d 6907 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → ((𝑃‘𝑛)‘𝑥) = ((𝑃‘𝑘)‘𝑥)) |
| 46 | | fveq2 6905 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (𝑄‘𝑛) = (𝑄‘𝑘)) |
| 47 | 46 | fveq1d 6907 |
. . . . . . . 8
⊢ (𝑛 = 𝑘 → ((𝑄‘𝑛)‘𝑥) = ((𝑄‘𝑘)‘𝑥)) |
| 48 | 45, 47 | oveq12d 7450 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (((𝑃‘𝑛)‘𝑥) · ((𝑄‘𝑛)‘𝑥)) = (((𝑃‘𝑘)‘𝑥) · ((𝑄‘𝑘)‘𝑥))) |
| 49 | | eqid 2736 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ (((𝑃‘𝑛)‘𝑥) · ((𝑄‘𝑛)‘𝑥))) = (𝑛 ∈ ℕ ↦ (((𝑃‘𝑛)‘𝑥) · ((𝑄‘𝑛)‘𝑥))) |
| 50 | | ovex 7465 |
. . . . . . 7
⊢ (((𝑃‘𝑘)‘𝑥) · ((𝑄‘𝑘)‘𝑥)) ∈ V |
| 51 | 48, 49, 50 | fvmpt 7015 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((𝑃‘𝑛)‘𝑥) · ((𝑄‘𝑛)‘𝑥)))‘𝑘) = (((𝑃‘𝑘)‘𝑥) · ((𝑄‘𝑘)‘𝑥))) |
| 52 | 51 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑃‘𝑛)‘𝑥) · ((𝑄‘𝑛)‘𝑥)))‘𝑘) = (((𝑃‘𝑘)‘𝑥) · ((𝑄‘𝑘)‘𝑥))) |
| 53 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) |
| 54 | | fvex 6918 |
. . . . . . . 8
⊢ ((𝑃‘𝑘)‘𝑥) ∈ V |
| 55 | 45, 53, 54 | fvmpt 7015 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥))‘𝑘) = ((𝑃‘𝑘)‘𝑥)) |
| 56 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ ((𝑄‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑄‘𝑛)‘𝑥)) |
| 57 | | fvex 6918 |
. . . . . . . 8
⊢ ((𝑄‘𝑘)‘𝑥) ∈ V |
| 58 | 47, 56, 57 | fvmpt 7015 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑄‘𝑛)‘𝑥))‘𝑘) = ((𝑄‘𝑘)‘𝑥)) |
| 59 | 55, 58 | oveq12d 7450 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑄‘𝑛)‘𝑥))‘𝑘)) = (((𝑃‘𝑘)‘𝑥) · ((𝑄‘𝑘)‘𝑥))) |
| 60 | 59 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑄‘𝑛)‘𝑥))‘𝑘)) = (((𝑃‘𝑘)‘𝑥) · ((𝑄‘𝑘)‘𝑥))) |
| 61 | 52, 60 | eqtr4d 2779 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑃‘𝑛)‘𝑥) · ((𝑄‘𝑛)‘𝑥)))‘𝑘) = (((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑄‘𝑛)‘𝑥))‘𝑘))) |
| 62 | 14, 16, 17, 20, 21, 34, 43, 61 | climmul 15670 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑛 ∈ ℕ ↦ (((𝑃‘𝑛)‘𝑥) · ((𝑄‘𝑛)‘𝑥))) ⇝ ((𝐹‘𝑥) · (𝐺‘𝑥))) |
| 63 | 28 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ) |
| 64 | 63 | resmptd 6057 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ (((𝑃‘𝑛)‘𝑥) · ((𝑄‘𝑛)‘𝑥))) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ (((𝑃‘𝑛)‘𝑥) · ((𝑄‘𝑛)‘𝑥)))) |
| 65 | 25 | ffnd 6736 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑃‘𝑛) Fn ℝ) |
| 66 | 38 | ffnd 6736 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑄‘𝑛) Fn ℝ) |
| 67 | | reex 11247 |
. . . . . . . 8
⊢ ℝ
∈ V |
| 68 | 67 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ℝ ∈
V) |
| 69 | | inidm 4226 |
. . . . . . 7
⊢ (ℝ
∩ ℝ) = ℝ |
| 70 | | eqidd 2737 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑃‘𝑛)‘𝑥) = ((𝑃‘𝑛)‘𝑥)) |
| 71 | | eqidd 2737 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑄‘𝑛)‘𝑥) = ((𝑄‘𝑛)‘𝑥)) |
| 72 | 65, 66, 68, 68, 69, 70, 71 | offval 7707 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑃‘𝑛) ∘f · (𝑄‘𝑛)) = (𝑥 ∈ ℝ ↦ (((𝑃‘𝑛)‘𝑥) · ((𝑄‘𝑛)‘𝑥)))) |
| 73 | 23, 36 | i1fmul 25732 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑃‘𝑛) ∘f · (𝑄‘𝑛)) ∈ dom
∫1) |
| 74 | | i1fmbf 25711 |
. . . . . . 7
⊢ (((𝑃‘𝑛) ∘f · (𝑄‘𝑛)) ∈ dom ∫1 →
((𝑃‘𝑛) ∘f ·
(𝑄‘𝑛)) ∈ MblFn) |
| 75 | 73, 74 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑃‘𝑛) ∘f · (𝑄‘𝑛)) ∈ MblFn) |
| 76 | 72, 75 | eqeltrrd 2841 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑥 ∈ ℝ ↦ (((𝑃‘𝑛)‘𝑥) · ((𝑄‘𝑛)‘𝑥))) ∈ MblFn) |
| 77 | 9 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ dom vol) |
| 78 | | mbfres 25680 |
. . . . 5
⊢ (((𝑥 ∈ ℝ ↦ (((𝑃‘𝑛)‘𝑥) · ((𝑄‘𝑛)‘𝑥))) ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝑥 ∈ ℝ ↦ (((𝑃‘𝑛)‘𝑥) · ((𝑄‘𝑛)‘𝑥))) ↾ 𝐴) ∈ MblFn) |
| 79 | 76, 77, 78 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ (((𝑃‘𝑛)‘𝑥) · ((𝑄‘𝑛)‘𝑥))) ↾ 𝐴) ∈ MblFn) |
| 80 | 64, 79 | eqeltrrd 2841 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑥 ∈ 𝐴 ↦ (((𝑃‘𝑛)‘𝑥) · ((𝑄‘𝑛)‘𝑥))) ∈ MblFn) |
| 81 | | ovex 7465 |
. . . 4
⊢ (((𝑃‘𝑛)‘𝑥) · ((𝑄‘𝑛)‘𝑥)) ∈ V |
| 82 | 81 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑥 ∈ 𝐴)) → (((𝑃‘𝑛)‘𝑥) · ((𝑄‘𝑛)‘𝑥)) ∈ V) |
| 83 | 14, 15, 62, 80, 82 | mbflim 25704 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥))) ∈ MblFn) |
| 84 | 13, 83 | eqeltrd 2840 |
1
⊢ (𝜑 → (𝐹 ∘f · 𝐺) ∈ MblFn) |