MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfmullem2 Structured version   Visualization version   GIF version

Theorem mbfmullem2 24889
Description: Lemma for mbfmul 24891. (Contributed by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfmul.1 (𝜑𝐹 ∈ MblFn)
mbfmul.2 (𝜑𝐺 ∈ MblFn)
mbfmul.3 (𝜑𝐹:𝐴⟶ℝ)
mbfmul.4 (𝜑𝐺:𝐴⟶ℝ)
mbfmul.5 (𝜑𝑃:ℕ⟶dom ∫1)
mbfmul.6 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
mbfmul.7 (𝜑𝑄:ℕ⟶dom ∫1)
mbfmul.8 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥)) ⇝ (𝐺𝑥))
Assertion
Ref Expression
mbfmullem2 (𝜑 → (𝐹f · 𝐺) ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝐴   𝑃,𝑛,𝑥   𝜑,𝑛,𝑥   𝑄,𝑛,𝑥   𝑛,𝐹,𝑥   𝑛,𝐺,𝑥

Proof of Theorem mbfmullem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 mbfmul.3 . . . 4 (𝜑𝐹:𝐴⟶ℝ)
21ffnd 6601 . . 3 (𝜑𝐹 Fn 𝐴)
3 mbfmul.4 . . . 4 (𝜑𝐺:𝐴⟶ℝ)
43ffnd 6601 . . 3 (𝜑𝐺 Fn 𝐴)
51fdmd 6611 . . . 4 (𝜑 → dom 𝐹 = 𝐴)
6 mbfmul.1 . . . . 5 (𝜑𝐹 ∈ MblFn)
7 mbfdm 24790 . . . . 5 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
86, 7syl 17 . . . 4 (𝜑 → dom 𝐹 ∈ dom vol)
95, 8eqeltrrd 2840 . . 3 (𝜑𝐴 ∈ dom vol)
10 inidm 4152 . . 3 (𝐴𝐴) = 𝐴
11 eqidd 2739 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
12 eqidd 2739 . . 3 ((𝜑𝑥𝐴) → (𝐺𝑥) = (𝐺𝑥))
132, 4, 9, 9, 10, 11, 12offval 7542 . 2 (𝜑 → (𝐹f · 𝐺) = (𝑥𝐴 ↦ ((𝐹𝑥) · (𝐺𝑥))))
14 nnuz 12621 . . 3 ℕ = (ℤ‘1)
15 1zzd 12351 . . 3 (𝜑 → 1 ∈ ℤ)
16 1zzd 12351 . . . 4 ((𝜑𝑥𝐴) → 1 ∈ ℤ)
17 mbfmul.6 . . . 4 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
18 nnex 11979 . . . . . 6 ℕ ∈ V
1918mptex 7099 . . . . 5 (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ V
2019a1i 11 . . . 4 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ V)
21 mbfmul.8 . . . 4 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥)) ⇝ (𝐺𝑥))
22 mbfmul.5 . . . . . . . . . . 11 (𝜑𝑃:ℕ⟶dom ∫1)
2322ffvelrnda 6961 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑃𝑛) ∈ dom ∫1)
24 i1ff 24840 . . . . . . . . . 10 ((𝑃𝑛) ∈ dom ∫1 → (𝑃𝑛):ℝ⟶ℝ)
2523, 24syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑃𝑛):ℝ⟶ℝ)
2625adantlr 712 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → (𝑃𝑛):ℝ⟶ℝ)
27 mblss 24695 . . . . . . . . . . 11 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
289, 27syl 17 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
2928sselda 3921 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
3029adantr 481 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
3126, 30ffvelrnd 6962 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑃𝑛)‘𝑥) ∈ ℝ)
3231recnd 11003 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑃𝑛)‘𝑥) ∈ ℂ)
3332fmpttd 6989 . . . . 5 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)):ℕ⟶ℂ)
3433ffvelrnda 6961 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) ∈ ℂ)
35 mbfmul.7 . . . . . . . . . . 11 (𝜑𝑄:ℕ⟶dom ∫1)
3635ffvelrnda 6961 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑄𝑛) ∈ dom ∫1)
37 i1ff 24840 . . . . . . . . . 10 ((𝑄𝑛) ∈ dom ∫1 → (𝑄𝑛):ℝ⟶ℝ)
3836, 37syl 17 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑄𝑛):ℝ⟶ℝ)
3938adantlr 712 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → (𝑄𝑛):ℝ⟶ℝ)
4039, 30ffvelrnd 6962 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑄𝑛)‘𝑥) ∈ ℝ)
4140recnd 11003 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛 ∈ ℕ) → ((𝑄𝑛)‘𝑥) ∈ ℂ)
4241fmpttd 6989 . . . . 5 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥)):ℕ⟶ℂ)
4342ffvelrnda 6961 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘) ∈ ℂ)
44 fveq2 6774 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑃𝑛) = (𝑃𝑘))
4544fveq1d 6776 . . . . . . . 8 (𝑛 = 𝑘 → ((𝑃𝑛)‘𝑥) = ((𝑃𝑘)‘𝑥))
46 fveq2 6774 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑄𝑛) = (𝑄𝑘))
4746fveq1d 6776 . . . . . . . 8 (𝑛 = 𝑘 → ((𝑄𝑛)‘𝑥) = ((𝑄𝑘)‘𝑥))
4845, 47oveq12d 7293 . . . . . . 7 (𝑛 = 𝑘 → (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
49 eqid 2738 . . . . . . 7 (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) = (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)))
50 ovex 7308 . . . . . . 7 (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)) ∈ V
5148, 49, 50fvmpt 6875 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)))‘𝑘) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
5251adantl 482 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)))‘𝑘) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
53 eqid 2738 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))
54 fvex 6787 . . . . . . . 8 ((𝑃𝑘)‘𝑥) ∈ V
5545, 53, 54fvmpt 6875 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) = ((𝑃𝑘)‘𝑥))
56 eqid 2738 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))
57 fvex 6787 . . . . . . . 8 ((𝑄𝑘)‘𝑥) ∈ V
5847, 56, 57fvmpt 6875 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘) = ((𝑄𝑘)‘𝑥))
5955, 58oveq12d 7293 . . . . . 6 (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘)) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
6059adantl 482 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘)) = (((𝑃𝑘)‘𝑥) · ((𝑄𝑘)‘𝑥)))
6152, 60eqtr4d 2781 . . . 4 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)))‘𝑘) = (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥))‘𝑘) · ((𝑛 ∈ ℕ ↦ ((𝑄𝑛)‘𝑥))‘𝑘)))
6214, 16, 17, 20, 21, 34, 43, 61climmul 15342 . . 3 ((𝜑𝑥𝐴) → (𝑛 ∈ ℕ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ⇝ ((𝐹𝑥) · (𝐺𝑥)))
6328adantr 481 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴 ⊆ ℝ)
6463resmptd 5948 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ↾ 𝐴) = (𝑥𝐴 ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))))
6525ffnd 6601 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑃𝑛) Fn ℝ)
6638ffnd 6601 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑄𝑛) Fn ℝ)
67 reex 10962 . . . . . . . 8 ℝ ∈ V
6867a1i 11 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ℝ ∈ V)
69 inidm 4152 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
70 eqidd 2739 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑃𝑛)‘𝑥) = ((𝑃𝑛)‘𝑥))
71 eqidd 2739 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → ((𝑄𝑛)‘𝑥) = ((𝑄𝑛)‘𝑥))
7265, 66, 68, 68, 69, 70, 71offval 7542 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑃𝑛) ∘f · (𝑄𝑛)) = (𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))))
7323, 36i1fmul 24860 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑃𝑛) ∘f · (𝑄𝑛)) ∈ dom ∫1)
74 i1fmbf 24839 . . . . . . 7 (((𝑃𝑛) ∘f · (𝑄𝑛)) ∈ dom ∫1 → ((𝑃𝑛) ∘f · (𝑄𝑛)) ∈ MblFn)
7573, 74syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝑃𝑛) ∘f · (𝑄𝑛)) ∈ MblFn)
7672, 75eqeltrrd 2840 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ MblFn)
779adantr 481 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ dom vol)
78 mbfres 24808 . . . . 5 (((𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ MblFn ∧ 𝐴 ∈ dom vol) → ((𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ↾ 𝐴) ∈ MblFn)
7976, 77, 78syl2anc 584 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝑥 ∈ ℝ ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ↾ 𝐴) ∈ MblFn)
8064, 79eqeltrrd 2840 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝑥𝐴 ↦ (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥))) ∈ MblFn)
81 ovex 7308 . . . 4 (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)) ∈ V
8281a1i 11 . . 3 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑥𝐴)) → (((𝑃𝑛)‘𝑥) · ((𝑄𝑛)‘𝑥)) ∈ V)
8314, 15, 62, 80, 82mbflim 24832 . 2 (𝜑 → (𝑥𝐴 ↦ ((𝐹𝑥) · (𝐺𝑥))) ∈ MblFn)
8413, 83eqeltrd 2839 1 (𝜑 → (𝐹f · 𝐺) ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887   class class class wbr 5074  cmpt 5157  dom cdm 5589  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  cc 10869  cr 10870  1c1 10872   · cmul 10876  cn 11973  cli 15193  volcvol 24627  MblFncmbf 24778  1citg1 24779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xadd 12849  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-xmet 20590  df-met 20591  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784
This theorem is referenced by:  mbfmullem  24890
  Copyright terms: Public domain W3C validator