![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > i1ff | Structured version Visualization version GIF version |
Description: A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
i1ff | ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isi1f 25723 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
3 | 2 | simp1d 1141 | 1 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2106 ∖ cdif 3960 {csn 4631 ◡ccnv 5688 dom cdm 5689 ran crn 5690 “ cima 5692 ⟶wf 6559 ‘cfv 6563 Fincfn 8984 ℝcr 11152 0cc0 11153 volcvol 25512 MblFncmbf 25663 ∫1citg1 25664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-sum 15720 df-itg1 25669 |
This theorem is referenced by: i1fima 25727 i1fima2 25728 i1f0rn 25731 itg1val2 25733 itg1cl 25734 itg1ge0 25735 i1faddlem 25742 i1fmullem 25743 i1fadd 25744 i1fmul 25745 itg1addlem4 25748 itg1addlem4OLD 25749 itg1addlem5 25750 i1fmulclem 25752 i1fmulc 25753 itg1mulc 25754 i1fres 25755 i1fpos 25756 i1fposd 25757 i1fsub 25758 itg1sub 25759 itg10a 25760 itg1ge0a 25761 itg1lea 25762 itg1le 25763 itg1climres 25764 mbfi1fseqlem5 25769 mbfi1fseqlem6 25770 mbfi1flimlem 25772 mbfmullem2 25774 itg2itg1 25786 itg20 25787 itg2le 25789 itg2seq 25792 itg2uba 25793 itg2lea 25794 itg2mulclem 25796 itg2splitlem 25798 itg2split 25799 itg2monolem1 25800 itg2i1fseqle 25804 itg2i1fseq 25805 itg2addlem 25808 i1fibl 25858 itgitg1 25859 itg2addnclem 37658 itg2addnclem2 37659 itg2addnclem3 37660 itg2addnc 37661 ftc1anclem3 37682 ftc1anclem4 37683 ftc1anclem5 37684 ftc1anclem6 37685 ftc1anclem7 37686 ftc1anclem8 37687 ftc1anc 37688 |
Copyright terms: Public domain | W3C validator |