| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > i1ff | Structured version Visualization version GIF version | ||
| Description: A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1ff | ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isi1f 25645 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
| 3 | 2 | simp1d 1142 | 1 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2107 ∖ cdif 3928 {csn 4606 ◡ccnv 5664 dom cdm 5665 ran crn 5666 “ cima 5668 ⟶wf 6537 ‘cfv 6541 Fincfn 8967 ℝcr 11136 0cc0 11137 volcvol 25434 MblFncmbf 25585 ∫1citg1 25586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-sum 15705 df-itg1 25591 |
| This theorem is referenced by: i1fima 25649 i1fima2 25650 i1f0rn 25653 itg1val2 25655 itg1cl 25656 itg1ge0 25657 i1faddlem 25664 i1fmullem 25665 i1fadd 25666 i1fmul 25667 itg1addlem4 25670 itg1addlem5 25671 i1fmulclem 25673 i1fmulc 25674 itg1mulc 25675 i1fres 25676 i1fpos 25677 i1fposd 25678 i1fsub 25679 itg1sub 25680 itg10a 25681 itg1ge0a 25682 itg1lea 25683 itg1le 25684 itg1climres 25685 mbfi1fseqlem5 25690 mbfi1fseqlem6 25691 mbfi1flimlem 25693 mbfmullem2 25695 itg2itg1 25707 itg20 25708 itg2le 25710 itg2seq 25713 itg2uba 25714 itg2lea 25715 itg2mulclem 25717 itg2splitlem 25719 itg2split 25720 itg2monolem1 25721 itg2i1fseqle 25725 itg2i1fseq 25726 itg2addlem 25729 i1fibl 25779 itgitg1 25780 itg2addnclem 37637 itg2addnclem2 37638 itg2addnclem3 37639 itg2addnc 37640 ftc1anclem3 37661 ftc1anclem4 37662 ftc1anclem5 37663 ftc1anclem6 37664 ftc1anclem7 37665 ftc1anclem8 37666 ftc1anc 37667 |
| Copyright terms: Public domain | W3C validator |