![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > i1ff | Structured version Visualization version GIF version |
Description: A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
i1ff | ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isi1f 25728 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
3 | 2 | simp1d 1142 | 1 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2108 ∖ cdif 3973 {csn 4648 ◡ccnv 5699 dom cdm 5700 ran crn 5701 “ cima 5703 ⟶wf 6569 ‘cfv 6573 Fincfn 9003 ℝcr 11183 0cc0 11184 volcvol 25517 MblFncmbf 25668 ∫1citg1 25669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-sum 15735 df-itg1 25674 |
This theorem is referenced by: i1fima 25732 i1fima2 25733 i1f0rn 25736 itg1val2 25738 itg1cl 25739 itg1ge0 25740 i1faddlem 25747 i1fmullem 25748 i1fadd 25749 i1fmul 25750 itg1addlem4 25753 itg1addlem4OLD 25754 itg1addlem5 25755 i1fmulclem 25757 i1fmulc 25758 itg1mulc 25759 i1fres 25760 i1fpos 25761 i1fposd 25762 i1fsub 25763 itg1sub 25764 itg10a 25765 itg1ge0a 25766 itg1lea 25767 itg1le 25768 itg1climres 25769 mbfi1fseqlem5 25774 mbfi1fseqlem6 25775 mbfi1flimlem 25777 mbfmullem2 25779 itg2itg1 25791 itg20 25792 itg2le 25794 itg2seq 25797 itg2uba 25798 itg2lea 25799 itg2mulclem 25801 itg2splitlem 25803 itg2split 25804 itg2monolem1 25805 itg2i1fseqle 25809 itg2i1fseq 25810 itg2addlem 25813 i1fibl 25863 itgitg1 25864 itg2addnclem 37631 itg2addnclem2 37632 itg2addnclem3 37633 itg2addnc 37634 ftc1anclem3 37655 ftc1anclem4 37656 ftc1anclem5 37657 ftc1anclem6 37658 ftc1anclem7 37659 ftc1anclem8 37660 ftc1anc 37661 |
Copyright terms: Public domain | W3C validator |