| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > i1ff | Structured version Visualization version GIF version | ||
| Description: A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1ff | ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isi1f 25603 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
| 3 | 2 | simp1d 1142 | 1 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 ∖ cdif 3899 {csn 4576 ◡ccnv 5615 dom cdm 5616 ran crn 5617 “ cima 5619 ⟶wf 6477 ‘cfv 6481 Fincfn 8869 ℝcr 11005 0cc0 11006 volcvol 25392 MblFncmbf 25543 ∫1citg1 25544 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-sum 15594 df-itg1 25549 |
| This theorem is referenced by: i1fima 25607 i1fima2 25608 i1f0rn 25611 itg1val2 25613 itg1cl 25614 itg1ge0 25615 i1faddlem 25622 i1fmullem 25623 i1fadd 25624 i1fmul 25625 itg1addlem4 25628 itg1addlem5 25629 i1fmulclem 25631 i1fmulc 25632 itg1mulc 25633 i1fres 25634 i1fpos 25635 i1fposd 25636 i1fsub 25637 itg1sub 25638 itg10a 25639 itg1ge0a 25640 itg1lea 25641 itg1le 25642 itg1climres 25643 mbfi1fseqlem5 25648 mbfi1fseqlem6 25649 mbfi1flimlem 25651 mbfmullem2 25653 itg2itg1 25665 itg20 25666 itg2le 25668 itg2seq 25671 itg2uba 25672 itg2lea 25673 itg2mulclem 25675 itg2splitlem 25677 itg2split 25678 itg2monolem1 25679 itg2i1fseqle 25683 itg2i1fseq 25684 itg2addlem 25687 i1fibl 25737 itgitg1 25738 itg2addnclem 37717 itg2addnclem2 37718 itg2addnclem3 37719 itg2addnc 37720 ftc1anclem3 37741 ftc1anclem4 37742 ftc1anclem5 37743 ftc1anclem6 37744 ftc1anclem7 37745 ftc1anclem8 37746 ftc1anc 37747 |
| Copyright terms: Public domain | W3C validator |