| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > i1ff | Structured version Visualization version GIF version | ||
| Description: A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1ff | ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isi1f 25632 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
| 3 | 2 | simp1d 1142 | 1 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∖ cdif 3928 {csn 4606 ◡ccnv 5658 dom cdm 5659 ran crn 5660 “ cima 5662 ⟶wf 6532 ‘cfv 6536 Fincfn 8964 ℝcr 11133 0cc0 11134 volcvol 25421 MblFncmbf 25572 ∫1citg1 25573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-sum 15708 df-itg1 25578 |
| This theorem is referenced by: i1fima 25636 i1fima2 25637 i1f0rn 25640 itg1val2 25642 itg1cl 25643 itg1ge0 25644 i1faddlem 25651 i1fmullem 25652 i1fadd 25653 i1fmul 25654 itg1addlem4 25657 itg1addlem5 25658 i1fmulclem 25660 i1fmulc 25661 itg1mulc 25662 i1fres 25663 i1fpos 25664 i1fposd 25665 i1fsub 25666 itg1sub 25667 itg10a 25668 itg1ge0a 25669 itg1lea 25670 itg1le 25671 itg1climres 25672 mbfi1fseqlem5 25677 mbfi1fseqlem6 25678 mbfi1flimlem 25680 mbfmullem2 25682 itg2itg1 25694 itg20 25695 itg2le 25697 itg2seq 25700 itg2uba 25701 itg2lea 25702 itg2mulclem 25704 itg2splitlem 25706 itg2split 25707 itg2monolem1 25708 itg2i1fseqle 25712 itg2i1fseq 25713 itg2addlem 25716 i1fibl 25766 itgitg1 25767 itg2addnclem 37700 itg2addnclem2 37701 itg2addnclem3 37702 itg2addnc 37703 ftc1anclem3 37724 ftc1anclem4 37725 ftc1anclem5 37726 ftc1anclem6 37727 ftc1anclem7 37728 ftc1anclem8 37729 ftc1anc 37730 |
| Copyright terms: Public domain | W3C validator |