Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > i1ff | Structured version Visualization version GIF version |
Description: A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
i1ff | ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isi1f 24819 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
3 | 2 | simp1d 1140 | 1 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ∈ wcel 2109 ∖ cdif 3888 {csn 4566 ◡ccnv 5587 dom cdm 5588 ran crn 5589 “ cima 5591 ⟶wf 6426 ‘cfv 6430 Fincfn 8707 ℝcr 10854 0cc0 10855 volcvol 24608 MblFncmbf 24759 ∫1citg1 24760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-sum 15379 df-itg1 24765 |
This theorem is referenced by: i1fima 24823 i1fima2 24824 i1f0rn 24827 itg1val2 24829 itg1cl 24830 itg1ge0 24831 i1faddlem 24838 i1fmullem 24839 i1fadd 24840 i1fmul 24841 itg1addlem4 24844 itg1addlem4OLD 24845 itg1addlem5 24846 i1fmulclem 24848 i1fmulc 24849 itg1mulc 24850 i1fres 24851 i1fpos 24852 i1fposd 24853 i1fsub 24854 itg1sub 24855 itg10a 24856 itg1ge0a 24857 itg1lea 24858 itg1le 24859 itg1climres 24860 mbfi1fseqlem5 24865 mbfi1fseqlem6 24866 mbfi1flimlem 24868 mbfmullem2 24870 itg2itg1 24882 itg20 24883 itg2le 24885 itg2seq 24888 itg2uba 24889 itg2lea 24890 itg2mulclem 24892 itg2splitlem 24894 itg2split 24895 itg2monolem1 24896 itg2i1fseqle 24900 itg2i1fseq 24901 itg2addlem 24904 i1fibl 24953 itgitg1 24954 itg2addnclem 35807 itg2addnclem2 35808 itg2addnclem3 35809 itg2addnc 35810 ftc1anclem3 35831 ftc1anclem4 35832 ftc1anclem5 35833 ftc1anclem6 35834 ftc1anclem7 35835 ftc1anclem8 35836 ftc1anc 35837 |
Copyright terms: Public domain | W3C validator |