| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > i1ff | Structured version Visualization version GIF version | ||
| Description: A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1ff | ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isi1f 25551 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
| 3 | 2 | simp1d 1142 | 1 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∖ cdif 3908 {csn 4585 ◡ccnv 5630 dom cdm 5631 ran crn 5632 “ cima 5634 ⟶wf 6495 ‘cfv 6499 Fincfn 8895 ℝcr 11043 0cc0 11044 volcvol 25340 MblFncmbf 25491 ∫1citg1 25492 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-sum 15629 df-itg1 25497 |
| This theorem is referenced by: i1fima 25555 i1fima2 25556 i1f0rn 25559 itg1val2 25561 itg1cl 25562 itg1ge0 25563 i1faddlem 25570 i1fmullem 25571 i1fadd 25572 i1fmul 25573 itg1addlem4 25576 itg1addlem5 25577 i1fmulclem 25579 i1fmulc 25580 itg1mulc 25581 i1fres 25582 i1fpos 25583 i1fposd 25584 i1fsub 25585 itg1sub 25586 itg10a 25587 itg1ge0a 25588 itg1lea 25589 itg1le 25590 itg1climres 25591 mbfi1fseqlem5 25596 mbfi1fseqlem6 25597 mbfi1flimlem 25599 mbfmullem2 25601 itg2itg1 25613 itg20 25614 itg2le 25616 itg2seq 25619 itg2uba 25620 itg2lea 25621 itg2mulclem 25623 itg2splitlem 25625 itg2split 25626 itg2monolem1 25627 itg2i1fseqle 25631 itg2i1fseq 25632 itg2addlem 25635 i1fibl 25685 itgitg1 25686 itg2addnclem 37638 itg2addnclem2 37639 itg2addnclem3 37640 itg2addnc 37641 ftc1anclem3 37662 ftc1anclem4 37663 ftc1anclem5 37664 ftc1anclem6 37665 ftc1anclem7 37666 ftc1anclem8 37667 ftc1anc 37668 |
| Copyright terms: Public domain | W3C validator |