| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > i1ff | Structured version Visualization version GIF version | ||
| Description: A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1ff | ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isi1f 25575 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
| 3 | 2 | simp1d 1142 | 1 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∖ cdif 3911 {csn 4589 ◡ccnv 5637 dom cdm 5638 ran crn 5639 “ cima 5641 ⟶wf 6507 ‘cfv 6511 Fincfn 8918 ℝcr 11067 0cc0 11068 volcvol 25364 MblFncmbf 25515 ∫1citg1 25516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-sum 15653 df-itg1 25521 |
| This theorem is referenced by: i1fima 25579 i1fima2 25580 i1f0rn 25583 itg1val2 25585 itg1cl 25586 itg1ge0 25587 i1faddlem 25594 i1fmullem 25595 i1fadd 25596 i1fmul 25597 itg1addlem4 25600 itg1addlem5 25601 i1fmulclem 25603 i1fmulc 25604 itg1mulc 25605 i1fres 25606 i1fpos 25607 i1fposd 25608 i1fsub 25609 itg1sub 25610 itg10a 25611 itg1ge0a 25612 itg1lea 25613 itg1le 25614 itg1climres 25615 mbfi1fseqlem5 25620 mbfi1fseqlem6 25621 mbfi1flimlem 25623 mbfmullem2 25625 itg2itg1 25637 itg20 25638 itg2le 25640 itg2seq 25643 itg2uba 25644 itg2lea 25645 itg2mulclem 25647 itg2splitlem 25649 itg2split 25650 itg2monolem1 25651 itg2i1fseqle 25655 itg2i1fseq 25656 itg2addlem 25659 i1fibl 25709 itgitg1 25710 itg2addnclem 37665 itg2addnclem2 37666 itg2addnclem3 37667 itg2addnc 37668 ftc1anclem3 37689 ftc1anclem4 37690 ftc1anclem5 37691 ftc1anclem6 37692 ftc1anclem7 37693 ftc1anclem8 37694 ftc1anc 37695 |
| Copyright terms: Public domain | W3C validator |