Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > i1ff | Structured version Visualization version GIF version |
Description: A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
i1ff | ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isi1f 24887 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
2 | 1 | simprbi 498 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
3 | 2 | simp1d 1142 | 1 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2104 ∖ cdif 3889 {csn 4565 ◡ccnv 5599 dom cdm 5600 ran crn 5601 “ cima 5603 ⟶wf 6454 ‘cfv 6458 Fincfn 8764 ℝcr 10920 0cc0 10921 volcvol 24676 MblFncmbf 24827 ∫1citg1 24828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-sum 15447 df-itg1 24833 |
This theorem is referenced by: i1fima 24891 i1fima2 24892 i1f0rn 24895 itg1val2 24897 itg1cl 24898 itg1ge0 24899 i1faddlem 24906 i1fmullem 24907 i1fadd 24908 i1fmul 24909 itg1addlem4 24912 itg1addlem4OLD 24913 itg1addlem5 24914 i1fmulclem 24916 i1fmulc 24917 itg1mulc 24918 i1fres 24919 i1fpos 24920 i1fposd 24921 i1fsub 24922 itg1sub 24923 itg10a 24924 itg1ge0a 24925 itg1lea 24926 itg1le 24927 itg1climres 24928 mbfi1fseqlem5 24933 mbfi1fseqlem6 24934 mbfi1flimlem 24936 mbfmullem2 24938 itg2itg1 24950 itg20 24951 itg2le 24953 itg2seq 24956 itg2uba 24957 itg2lea 24958 itg2mulclem 24960 itg2splitlem 24962 itg2split 24963 itg2monolem1 24964 itg2i1fseqle 24968 itg2i1fseq 24969 itg2addlem 24972 i1fibl 25021 itgitg1 25022 itg2addnclem 35876 itg2addnclem2 35877 itg2addnclem3 35878 itg2addnc 35879 ftc1anclem3 35900 ftc1anclem4 35901 ftc1anclem5 35902 ftc1anclem6 35903 ftc1anclem7 35904 ftc1anclem8 35905 ftc1anc 35906 |
Copyright terms: Public domain | W3C validator |