Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > i1ff | Structured version Visualization version GIF version |
Description: A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
Ref | Expression |
---|---|
i1ff | ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isi1f 24374 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
2 | 1 | simprbi 500 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
3 | 2 | simp1d 1139 | 1 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 ∈ wcel 2111 ∖ cdif 3855 {csn 4522 ◡ccnv 5523 dom cdm 5524 ran crn 5525 “ cima 5527 ⟶wf 6331 ‘cfv 6335 Fincfn 8527 ℝcr 10574 0cc0 10575 volcvol 24163 MblFncmbf 24314 ∫1citg1 24315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-fv 6343 df-sum 15091 df-itg1 24320 |
This theorem is referenced by: i1fima 24378 i1fima2 24379 i1f0rn 24382 itg1val2 24384 itg1cl 24385 itg1ge0 24386 i1faddlem 24393 i1fmullem 24394 i1fadd 24395 i1fmul 24396 itg1addlem4 24399 itg1addlem5 24400 i1fmulclem 24402 i1fmulc 24403 itg1mulc 24404 i1fres 24405 i1fpos 24406 i1fposd 24407 i1fsub 24408 itg1sub 24409 itg10a 24410 itg1ge0a 24411 itg1lea 24412 itg1le 24413 itg1climres 24414 mbfi1fseqlem5 24419 mbfi1fseqlem6 24420 mbfi1flimlem 24422 mbfmullem2 24424 itg2itg1 24436 itg20 24437 itg2le 24439 itg2seq 24442 itg2uba 24443 itg2lea 24444 itg2mulclem 24446 itg2splitlem 24448 itg2split 24449 itg2monolem1 24450 itg2i1fseqle 24454 itg2i1fseq 24455 itg2addlem 24458 i1fibl 24507 itgitg1 24508 itg2addnclem 35388 itg2addnclem2 35389 itg2addnclem3 35390 itg2addnc 35391 ftc1anclem3 35412 ftc1anclem4 35413 ftc1anclem5 35414 ftc1anclem6 35415 ftc1anclem7 35416 ftc1anclem8 35417 ftc1anc 35418 |
Copyright terms: Public domain | W3C validator |