| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > i1ff | Structured version Visualization version GIF version | ||
| Description: A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1ff | ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isi1f 25710 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
| 3 | 2 | simp1d 1142 | 1 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2107 ∖ cdif 3947 {csn 4625 ◡ccnv 5683 dom cdm 5684 ran crn 5685 “ cima 5687 ⟶wf 6556 ‘cfv 6560 Fincfn 8986 ℝcr 11155 0cc0 11156 volcvol 25499 MblFncmbf 25650 ∫1citg1 25651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-sum 15724 df-itg1 25656 |
| This theorem is referenced by: i1fima 25714 i1fima2 25715 i1f0rn 25718 itg1val2 25720 itg1cl 25721 itg1ge0 25722 i1faddlem 25729 i1fmullem 25730 i1fadd 25731 i1fmul 25732 itg1addlem4 25735 itg1addlem5 25736 i1fmulclem 25738 i1fmulc 25739 itg1mulc 25740 i1fres 25741 i1fpos 25742 i1fposd 25743 i1fsub 25744 itg1sub 25745 itg10a 25746 itg1ge0a 25747 itg1lea 25748 itg1le 25749 itg1climres 25750 mbfi1fseqlem5 25755 mbfi1fseqlem6 25756 mbfi1flimlem 25758 mbfmullem2 25760 itg2itg1 25772 itg20 25773 itg2le 25775 itg2seq 25778 itg2uba 25779 itg2lea 25780 itg2mulclem 25782 itg2splitlem 25784 itg2split 25785 itg2monolem1 25786 itg2i1fseqle 25790 itg2i1fseq 25791 itg2addlem 25794 i1fibl 25844 itgitg1 25845 itg2addnclem 37679 itg2addnclem2 37680 itg2addnclem3 37681 itg2addnc 37682 ftc1anclem3 37703 ftc1anclem4 37704 ftc1anclem5 37705 ftc1anclem6 37706 ftc1anclem7 37707 ftc1anclem8 37708 ftc1anc 37709 |
| Copyright terms: Public domain | W3C validator |