| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > i1ff | Structured version Visualization version GIF version | ||
| Description: A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1ff | ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isi1f 25622 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
| 3 | 2 | simp1d 1142 | 1 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2113 ∖ cdif 3895 {csn 4577 ◡ccnv 5620 dom cdm 5621 ran crn 5622 “ cima 5624 ⟶wf 6485 ‘cfv 6489 Fincfn 8879 ℝcr 11016 0cc0 11017 volcvol 25411 MblFncmbf 25562 ∫1citg1 25563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-sum 15601 df-itg1 25568 |
| This theorem is referenced by: i1fima 25626 i1fima2 25627 i1f0rn 25630 itg1val2 25632 itg1cl 25633 itg1ge0 25634 i1faddlem 25641 i1fmullem 25642 i1fadd 25643 i1fmul 25644 itg1addlem4 25647 itg1addlem5 25648 i1fmulclem 25650 i1fmulc 25651 itg1mulc 25652 i1fres 25653 i1fpos 25654 i1fposd 25655 i1fsub 25656 itg1sub 25657 itg10a 25658 itg1ge0a 25659 itg1lea 25660 itg1le 25661 itg1climres 25662 mbfi1fseqlem5 25667 mbfi1fseqlem6 25668 mbfi1flimlem 25670 mbfmullem2 25672 itg2itg1 25684 itg20 25685 itg2le 25687 itg2seq 25690 itg2uba 25691 itg2lea 25692 itg2mulclem 25694 itg2splitlem 25696 itg2split 25697 itg2monolem1 25698 itg2i1fseqle 25702 itg2i1fseq 25703 itg2addlem 25706 i1fibl 25756 itgitg1 25757 itg2addnclem 37784 itg2addnclem2 37785 itg2addnclem3 37786 itg2addnc 37787 ftc1anclem3 37808 ftc1anclem4 37809 ftc1anclem5 37810 ftc1anclem6 37811 ftc1anclem7 37812 ftc1anclem8 37813 ftc1anc 37814 |
| Copyright terms: Public domain | W3C validator |