| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > i1ff | Structured version Visualization version GIF version | ||
| Description: A simple function is a function on the reals. (Contributed by Mario Carneiro, 26-Jun-2014.) |
| Ref | Expression |
|---|---|
| i1ff | ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isi1f 25591 | . . 3 ⊢ (𝐹 ∈ dom ∫1 ↔ (𝐹 ∈ MblFn ∧ (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ dom ∫1 → (𝐹:ℝ⟶ℝ ∧ ran 𝐹 ∈ Fin ∧ (vol‘(◡𝐹 “ (ℝ ∖ {0}))) ∈ ℝ)) |
| 3 | 2 | simp1d 1142 | 1 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∖ cdif 3902 {csn 4579 ◡ccnv 5622 dom cdm 5623 ran crn 5624 “ cima 5626 ⟶wf 6482 ‘cfv 6486 Fincfn 8879 ℝcr 11027 0cc0 11028 volcvol 25380 MblFncmbf 25531 ∫1citg1 25532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-sum 15612 df-itg1 25537 |
| This theorem is referenced by: i1fima 25595 i1fima2 25596 i1f0rn 25599 itg1val2 25601 itg1cl 25602 itg1ge0 25603 i1faddlem 25610 i1fmullem 25611 i1fadd 25612 i1fmul 25613 itg1addlem4 25616 itg1addlem5 25617 i1fmulclem 25619 i1fmulc 25620 itg1mulc 25621 i1fres 25622 i1fpos 25623 i1fposd 25624 i1fsub 25625 itg1sub 25626 itg10a 25627 itg1ge0a 25628 itg1lea 25629 itg1le 25630 itg1climres 25631 mbfi1fseqlem5 25636 mbfi1fseqlem6 25637 mbfi1flimlem 25639 mbfmullem2 25641 itg2itg1 25653 itg20 25654 itg2le 25656 itg2seq 25659 itg2uba 25660 itg2lea 25661 itg2mulclem 25663 itg2splitlem 25665 itg2split 25666 itg2monolem1 25667 itg2i1fseqle 25671 itg2i1fseq 25672 itg2addlem 25675 i1fibl 25725 itgitg1 25726 itg2addnclem 37653 itg2addnclem2 37654 itg2addnclem3 37655 itg2addnc 37656 ftc1anclem3 37677 ftc1anclem4 37678 ftc1anclem5 37679 ftc1anclem6 37680 ftc1anclem7 37681 ftc1anclem8 37682 ftc1anc 37683 |
| Copyright terms: Public domain | W3C validator |