MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2i1fseq Structured version   Visualization version   GIF version

Theorem itg2i1fseq 25804
Description: Subject to the conditions coming from mbfi1fseq 25770, the integral of the sequence of simple functions converges to the integral of the target function. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2i1fseq.1 (𝜑𝐹 ∈ MblFn)
itg2i1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2i1fseq.3 (𝜑𝑃:ℕ⟶dom ∫1)
itg2i1fseq.4 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
itg2i1fseq.5 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
itg2i1fseq.6 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
Assertion
Ref Expression
itg2i1fseq (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑚,𝑛,𝑥,𝐹   𝑃,𝑚,𝑛,𝑥   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑆(𝑥,𝑚,𝑛)

Proof of Theorem itg2i1fseq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑃𝑛) = (𝑃𝑚))
21fveq1d 6908 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑃𝑛)‘𝑥) = ((𝑃𝑚)‘𝑥))
32cbvmptv 5260 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑥))
4 fveq2 6906 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑃𝑚)‘𝑥) = ((𝑃𝑚)‘𝑦))
54mpteq2dv 5249 . . . . . . 7 (𝑥 = 𝑦 → (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)))
63, 5eqtrid 2786 . . . . . 6 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)))
76rneqd 5951 . . . . 5 (𝑥 = 𝑦 → ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)))
87supeq1d 9483 . . . 4 (𝑥 = 𝑦 → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < ))
98cbvmptv 5260 . . 3 (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < )) = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < ))
10 itg2i1fseq.3 . . . . 5 (𝜑𝑃:ℕ⟶dom ∫1)
1110ffvelcdmda 7103 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∈ dom ∫1)
12 i1fmbf 25723 . . . 4 ((𝑃𝑚) ∈ dom ∫1 → (𝑃𝑚) ∈ MblFn)
1311, 12syl 17 . . 3 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∈ MblFn)
14 i1ff 25724 . . . . 5 ((𝑃𝑚) ∈ dom ∫1 → (𝑃𝑚):ℝ⟶ℝ)
1511, 14syl 17 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚):ℝ⟶ℝ)
16 itg2i1fseq.4 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
171breq2d 5159 . . . . . . . 8 (𝑛 = 𝑚 → (0𝑝r ≤ (𝑃𝑛) ↔ 0𝑝r ≤ (𝑃𝑚)))
18 fvoveq1 7453 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑚 + 1)))
191, 18breq12d 5160 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1))))
2017, 19anbi12d 632 . . . . . . 7 (𝑛 = 𝑚 → ((0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) ↔ (0𝑝r ≤ (𝑃𝑚) ∧ (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)))))
2120rspccva 3620 . . . . . 6 ((∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) ∧ 𝑚 ∈ ℕ) → (0𝑝r ≤ (𝑃𝑚) ∧ (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1))))
2216, 21sylan 580 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (0𝑝r ≤ (𝑃𝑚) ∧ (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1))))
2322simpld 494 . . . 4 ((𝜑𝑚 ∈ ℕ) → 0𝑝r ≤ (𝑃𝑚))
24 0plef 25720 . . . 4 ((𝑃𝑚):ℝ⟶(0[,)+∞) ↔ ((𝑃𝑚):ℝ⟶ℝ ∧ 0𝑝r ≤ (𝑃𝑚)))
2515, 23, 24sylanbrc 583 . . 3 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚):ℝ⟶(0[,)+∞))
2622simprd 495 . . 3 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)))
27 rge0ssre 13492 . . . . 5 (0[,)+∞) ⊆ ℝ
28 itg2i1fseq.2 . . . . . 6 (𝜑𝐹:ℝ⟶(0[,)+∞))
2928ffvelcdmda 7103 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,)+∞))
3027, 29sselid 3992 . . . 4 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
31 itg2i1fseq.1 . . . . . . . . 9 (𝜑𝐹 ∈ MblFn)
32 itg2i1fseq.5 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
3331, 28, 10, 16, 32itg2i1fseqle 25803 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∘r𝐹)
3415ffnd 6737 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) Fn ℝ)
3528ffnd 6737 . . . . . . . . . 10 (𝜑𝐹 Fn ℝ)
3635adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝐹 Fn ℝ)
37 reex 11243 . . . . . . . . . 10 ℝ ∈ V
3837a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ℝ ∈ V)
39 inidm 4234 . . . . . . . . 9 (ℝ ∩ ℝ) = ℝ
40 eqidd 2735 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) = ((𝑃𝑚)‘𝑦))
41 eqidd 2735 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
4234, 36, 38, 38, 39, 40, 41ofrfval 7706 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝑃𝑚) ∘r𝐹 ↔ ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦)))
4333, 42mpbid 232 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
4443r19.21bi 3248 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
4544an32s 652 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
4645ralrimiva 3143 . . . 4 ((𝜑𝑦 ∈ ℝ) → ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
47 brralrspcev 5207 . . . 4 (((𝐹𝑦) ∈ ℝ ∧ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦)) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
4830, 46, 47syl2anc 584 . . 3 ((𝜑𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
491fveq2d 6910 . . . . . 6 (𝑛 = 𝑚 → (∫2‘(𝑃𝑛)) = (∫2‘(𝑃𝑚)))
5049cbvmptv 5260 . . . . 5 (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))) = (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚)))
5150rneqi 5950 . . . 4 ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))) = ran (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚)))
5251supeq1i 9484 . . 3 sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))), ℝ*, < ) = sup(ran (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚))), ℝ*, < )
539, 13, 25, 26, 48, 52itg2mono 25802 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < ))) = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))), ℝ*, < ))
5428feqmptd 6976 . . . . 5 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
551fveq1d 6908 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝑃𝑛)‘𝑦) = ((𝑃𝑚)‘𝑦))
5655cbvmptv 5260 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦))
5756rneqi 5950 . . . . . . . 8 ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) = ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦))
5857supeq1i 9484 . . . . . . 7 sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < )
59 nnuz 12918 . . . . . . . . 9 ℕ = (ℤ‘1)
60 1zzd 12645 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℤ)
6115ffvelcdmda 7103 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) ∈ ℝ)
6261an32s 652 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃𝑚)‘𝑦) ∈ ℝ)
6362, 56fmptd 7133 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)):ℕ⟶ℝ)
64 peano2nn 12275 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
65 ffvelcdm 7100 . . . . . . . . . . . . . . . . 17 ((𝑃:ℕ⟶dom ∫1 ∧ (𝑚 + 1) ∈ ℕ) → (𝑃‘(𝑚 + 1)) ∈ dom ∫1)
6610, 64, 65syl2an 596 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)) ∈ dom ∫1)
67 i1ff 25724 . . . . . . . . . . . . . . . 16 ((𝑃‘(𝑚 + 1)) ∈ dom ∫1 → (𝑃‘(𝑚 + 1)):ℝ⟶ℝ)
6866, 67syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)):ℝ⟶ℝ)
6968ffnd 6737 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)) Fn ℝ)
70 eqidd 2735 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘(𝑚 + 1))‘𝑦) = ((𝑃‘(𝑚 + 1))‘𝑦))
7134, 69, 38, 38, 39, 40, 70ofrfval 7706 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)) ↔ ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦)))
7226, 71mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦))
7372r19.21bi 3248 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦))
7473an32s 652 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦))
75 eqid 2734 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))
76 fvex 6919 . . . . . . . . . . . 12 ((𝑃𝑚)‘𝑦) ∈ V
7755, 75, 76fvmpt 7015 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) = ((𝑃𝑚)‘𝑦))
7877adantl 481 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) = ((𝑃𝑚)‘𝑦))
79 fveq2 6906 . . . . . . . . . . . . . 14 (𝑛 = (𝑚 + 1) → (𝑃𝑛) = (𝑃‘(𝑚 + 1)))
8079fveq1d 6908 . . . . . . . . . . . . 13 (𝑛 = (𝑚 + 1) → ((𝑃𝑛)‘𝑦) = ((𝑃‘(𝑚 + 1))‘𝑦))
81 fvex 6919 . . . . . . . . . . . . 13 ((𝑃‘(𝑚 + 1))‘𝑦) ∈ V
8280, 75, 81fvmpt 7015 . . . . . . . . . . . 12 ((𝑚 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦))
8364, 82syl 17 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦))
8483adantl 481 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦))
8574, 78, 843brtr4d 5179 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)))
8677breq1d 5157 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ((𝑃𝑚)‘𝑦) ≤ 𝑧))
8786ralbiia 3088 . . . . . . . . . . 11 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
8887rexbii 3091 . . . . . . . . . 10 (∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
8948, 88sylibr 234 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧)
9059, 60, 63, 85, 89climsup 15702 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ))
91 fveq2 6906 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑃𝑛)‘𝑥) = ((𝑃𝑛)‘𝑦))
9291mpteq2dv 5249 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)))
93 fveq2 6906 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
9492, 93breq12d 5160 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦)))
9594rspccva 3620 . . . . . . . . 9 ((∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥) ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦))
9632, 95sylan 580 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦))
97 climuni 15584 . . . . . . . 8 (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) ∧ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦)) → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) = (𝐹𝑦))
9890, 96, 97syl2anc 584 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) = (𝐹𝑦))
9958, 98eqtr3id 2788 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < ) = (𝐹𝑦))
10099mpteq2dva 5247 . . . . 5 (𝜑 → (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < )) = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
10154, 100eqtr4d 2777 . . . 4 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < )))
102101, 9eqtr4di 2792 . . 3 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < )))
103102fveq2d 6910 . 2 (𝜑 → (∫2𝐹) = (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < ))))
104 itg2i1fseq.6 . . . . . 6 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
105 itg2itg1 25785 . . . . . . . 8 (((𝑃𝑚) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑃𝑚)) → (∫2‘(𝑃𝑚)) = (∫1‘(𝑃𝑚)))
10611, 23, 105syl2anc 584 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (∫2‘(𝑃𝑚)) = (∫1‘(𝑃𝑚)))
107106mpteq2dva 5247 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚))) = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚))))
108104, 107eqtr4id 2793 . . . . 5 (𝜑𝑆 = (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚))))
109108, 50eqtr4di 2792 . . . 4 (𝜑𝑆 = (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))))
110109rneqd 5951 . . 3 (𝜑 → ran 𝑆 = ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))))
111110supeq1d 9483 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))), ℝ*, < ))
11253, 103, 1113eqtr4d 2784 1 (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wral 3058  wrex 3067  Vcvv 3477   class class class wbr 5147  cmpt 5230  dom cdm 5688  ran crn 5689   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  r cofr 7695  supcsup 9477  cr 11151  0cc0 11152  1c1 11153   + caddc 11155  +∞cpnf 11289  *cxr 11291   < clt 11292  cle 11293  cn 12263  [,)cico 13385  cli 15516  MblFncmbf 25662  1citg1 25663  2citg2 25664  0𝑝c0p 25717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719  df-rest 17468  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-bases 22968  df-cmp 23410  df-ovol 25512  df-vol 25513  df-mbf 25667  df-itg1 25668  df-itg2 25669  df-0p 25718
This theorem is referenced by:  itg2i1fseq2  25805
  Copyright terms: Public domain W3C validator