MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2i1fseq Structured version   Visualization version   GIF version

Theorem itg2i1fseq 25684
Description: Subject to the conditions coming from mbfi1fseq 25650, the integral of the sequence of simple functions converges to the integral of the target function. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2i1fseq.1 (𝜑𝐹 ∈ MblFn)
itg2i1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2i1fseq.3 (𝜑𝑃:ℕ⟶dom ∫1)
itg2i1fseq.4 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
itg2i1fseq.5 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
itg2i1fseq.6 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
Assertion
Ref Expression
itg2i1fseq (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑚,𝑛,𝑥,𝐹   𝑃,𝑚,𝑛,𝑥   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑆(𝑥,𝑚,𝑛)

Proof of Theorem itg2i1fseq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6828 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑃𝑛) = (𝑃𝑚))
21fveq1d 6830 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑃𝑛)‘𝑥) = ((𝑃𝑚)‘𝑥))
32cbvmptv 5197 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑥))
4 fveq2 6828 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑃𝑚)‘𝑥) = ((𝑃𝑚)‘𝑦))
54mpteq2dv 5187 . . . . . . 7 (𝑥 = 𝑦 → (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)))
63, 5eqtrid 2780 . . . . . 6 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)))
76rneqd 5882 . . . . 5 (𝑥 = 𝑦 → ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)))
87supeq1d 9337 . . . 4 (𝑥 = 𝑦 → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < ))
98cbvmptv 5197 . . 3 (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < )) = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < ))
10 itg2i1fseq.3 . . . . 5 (𝜑𝑃:ℕ⟶dom ∫1)
1110ffvelcdmda 7023 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∈ dom ∫1)
12 i1fmbf 25604 . . . 4 ((𝑃𝑚) ∈ dom ∫1 → (𝑃𝑚) ∈ MblFn)
1311, 12syl 17 . . 3 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∈ MblFn)
14 i1ff 25605 . . . . 5 ((𝑃𝑚) ∈ dom ∫1 → (𝑃𝑚):ℝ⟶ℝ)
1511, 14syl 17 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚):ℝ⟶ℝ)
16 itg2i1fseq.4 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
171breq2d 5105 . . . . . . . 8 (𝑛 = 𝑚 → (0𝑝r ≤ (𝑃𝑛) ↔ 0𝑝r ≤ (𝑃𝑚)))
18 fvoveq1 7375 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑚 + 1)))
191, 18breq12d 5106 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1))))
2017, 19anbi12d 632 . . . . . . 7 (𝑛 = 𝑚 → ((0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) ↔ (0𝑝r ≤ (𝑃𝑚) ∧ (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)))))
2120rspccva 3572 . . . . . 6 ((∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) ∧ 𝑚 ∈ ℕ) → (0𝑝r ≤ (𝑃𝑚) ∧ (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1))))
2216, 21sylan 580 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (0𝑝r ≤ (𝑃𝑚) ∧ (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1))))
2322simpld 494 . . . 4 ((𝜑𝑚 ∈ ℕ) → 0𝑝r ≤ (𝑃𝑚))
24 0plef 25601 . . . 4 ((𝑃𝑚):ℝ⟶(0[,)+∞) ↔ ((𝑃𝑚):ℝ⟶ℝ ∧ 0𝑝r ≤ (𝑃𝑚)))
2515, 23, 24sylanbrc 583 . . 3 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚):ℝ⟶(0[,)+∞))
2622simprd 495 . . 3 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)))
27 rge0ssre 13358 . . . . 5 (0[,)+∞) ⊆ ℝ
28 itg2i1fseq.2 . . . . . 6 (𝜑𝐹:ℝ⟶(0[,)+∞))
2928ffvelcdmda 7023 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,)+∞))
3027, 29sselid 3928 . . . 4 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
31 itg2i1fseq.1 . . . . . . . . 9 (𝜑𝐹 ∈ MblFn)
32 itg2i1fseq.5 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
3331, 28, 10, 16, 32itg2i1fseqle 25683 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∘r𝐹)
3415ffnd 6657 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) Fn ℝ)
3528ffnd 6657 . . . . . . . . . 10 (𝜑𝐹 Fn ℝ)
3635adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝐹 Fn ℝ)
37 reex 11104 . . . . . . . . . 10 ℝ ∈ V
3837a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ℝ ∈ V)
39 inidm 4176 . . . . . . . . 9 (ℝ ∩ ℝ) = ℝ
40 eqidd 2734 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) = ((𝑃𝑚)‘𝑦))
41 eqidd 2734 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
4234, 36, 38, 38, 39, 40, 41ofrfval 7626 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝑃𝑚) ∘r𝐹 ↔ ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦)))
4333, 42mpbid 232 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
4443r19.21bi 3225 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
4544an32s 652 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
4645ralrimiva 3125 . . . 4 ((𝜑𝑦 ∈ ℝ) → ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
47 brralrspcev 5153 . . . 4 (((𝐹𝑦) ∈ ℝ ∧ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦)) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
4830, 46, 47syl2anc 584 . . 3 ((𝜑𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
491fveq2d 6832 . . . . . 6 (𝑛 = 𝑚 → (∫2‘(𝑃𝑛)) = (∫2‘(𝑃𝑚)))
5049cbvmptv 5197 . . . . 5 (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))) = (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚)))
5150rneqi 5881 . . . 4 ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))) = ran (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚)))
5251supeq1i 9338 . . 3 sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))), ℝ*, < ) = sup(ran (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚))), ℝ*, < )
539, 13, 25, 26, 48, 52itg2mono 25682 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < ))) = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))), ℝ*, < ))
5428feqmptd 6896 . . . . 5 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
551fveq1d 6830 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝑃𝑛)‘𝑦) = ((𝑃𝑚)‘𝑦))
5655cbvmptv 5197 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦))
5756rneqi 5881 . . . . . . . 8 ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) = ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦))
5857supeq1i 9338 . . . . . . 7 sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < )
59 nnuz 12777 . . . . . . . . 9 ℕ = (ℤ‘1)
60 1zzd 12509 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℤ)
6115ffvelcdmda 7023 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) ∈ ℝ)
6261an32s 652 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃𝑚)‘𝑦) ∈ ℝ)
6362, 56fmptd 7053 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)):ℕ⟶ℝ)
64 peano2nn 12144 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
65 ffvelcdm 7020 . . . . . . . . . . . . . . . . 17 ((𝑃:ℕ⟶dom ∫1 ∧ (𝑚 + 1) ∈ ℕ) → (𝑃‘(𝑚 + 1)) ∈ dom ∫1)
6610, 64, 65syl2an 596 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)) ∈ dom ∫1)
67 i1ff 25605 . . . . . . . . . . . . . . . 16 ((𝑃‘(𝑚 + 1)) ∈ dom ∫1 → (𝑃‘(𝑚 + 1)):ℝ⟶ℝ)
6866, 67syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)):ℝ⟶ℝ)
6968ffnd 6657 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)) Fn ℝ)
70 eqidd 2734 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘(𝑚 + 1))‘𝑦) = ((𝑃‘(𝑚 + 1))‘𝑦))
7134, 69, 38, 38, 39, 40, 70ofrfval 7626 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)) ↔ ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦)))
7226, 71mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦))
7372r19.21bi 3225 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦))
7473an32s 652 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦))
75 eqid 2733 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))
76 fvex 6841 . . . . . . . . . . . 12 ((𝑃𝑚)‘𝑦) ∈ V
7755, 75, 76fvmpt 6935 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) = ((𝑃𝑚)‘𝑦))
7877adantl 481 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) = ((𝑃𝑚)‘𝑦))
79 fveq2 6828 . . . . . . . . . . . . . 14 (𝑛 = (𝑚 + 1) → (𝑃𝑛) = (𝑃‘(𝑚 + 1)))
8079fveq1d 6830 . . . . . . . . . . . . 13 (𝑛 = (𝑚 + 1) → ((𝑃𝑛)‘𝑦) = ((𝑃‘(𝑚 + 1))‘𝑦))
81 fvex 6841 . . . . . . . . . . . . 13 ((𝑃‘(𝑚 + 1))‘𝑦) ∈ V
8280, 75, 81fvmpt 6935 . . . . . . . . . . . 12 ((𝑚 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦))
8364, 82syl 17 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦))
8483adantl 481 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦))
8574, 78, 843brtr4d 5125 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)))
8677breq1d 5103 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ((𝑃𝑚)‘𝑦) ≤ 𝑧))
8786ralbiia 3077 . . . . . . . . . . 11 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
8887rexbii 3080 . . . . . . . . . 10 (∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
8948, 88sylibr 234 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧)
9059, 60, 63, 85, 89climsup 15579 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ))
91 fveq2 6828 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑃𝑛)‘𝑥) = ((𝑃𝑛)‘𝑦))
9291mpteq2dv 5187 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)))
93 fveq2 6828 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
9492, 93breq12d 5106 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦)))
9594rspccva 3572 . . . . . . . . 9 ((∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥) ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦))
9632, 95sylan 580 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦))
97 climuni 15461 . . . . . . . 8 (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) ∧ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦)) → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) = (𝐹𝑦))
9890, 96, 97syl2anc 584 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) = (𝐹𝑦))
9958, 98eqtr3id 2782 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < ) = (𝐹𝑦))
10099mpteq2dva 5186 . . . . 5 (𝜑 → (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < )) = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
10154, 100eqtr4d 2771 . . . 4 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < )))
102101, 9eqtr4di 2786 . . 3 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < )))
103102fveq2d 6832 . 2 (𝜑 → (∫2𝐹) = (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < ))))
104 itg2i1fseq.6 . . . . . 6 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
105 itg2itg1 25665 . . . . . . . 8 (((𝑃𝑚) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑃𝑚)) → (∫2‘(𝑃𝑚)) = (∫1‘(𝑃𝑚)))
10611, 23, 105syl2anc 584 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (∫2‘(𝑃𝑚)) = (∫1‘(𝑃𝑚)))
107106mpteq2dva 5186 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚))) = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚))))
108104, 107eqtr4id 2787 . . . . 5 (𝜑𝑆 = (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚))))
109108, 50eqtr4di 2786 . . . 4 (𝜑𝑆 = (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))))
110109rneqd 5882 . . 3 (𝜑 → ran 𝑆 = ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))))
111110supeq1d 9337 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))), ℝ*, < ))
11253, 103, 1113eqtr4d 2778 1 (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  Vcvv 3437   class class class wbr 5093  cmpt 5174  dom cdm 5619  ran crn 5620   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  r cofr 7615  supcsup 9331  cr 11012  0cc0 11013  1c1 11014   + caddc 11016  +∞cpnf 11150  *cxr 11152   < clt 11153  cle 11154  cn 12132  [,)cico 13249  cli 15393  MblFncmbf 25543  1citg1 25544  2citg2 25545  0𝑝c0p 25598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cc 10333  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-disj 5061  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-omul 8396  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-dju 9801  df-card 9839  df-acn 9842  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-fl 13698  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-rlim 15398  df-sum 15596  df-rest 17328  df-topgen 17349  df-psmet 21285  df-xmet 21286  df-met 21287  df-bl 21288  df-mopn 21289  df-top 22810  df-topon 22827  df-bases 22862  df-cmp 23303  df-ovol 25393  df-vol 25394  df-mbf 25548  df-itg1 25549  df-itg2 25550  df-0p 25599
This theorem is referenced by:  itg2i1fseq2  25685
  Copyright terms: Public domain W3C validator