Step | Hyp | Ref
| Expression |
1 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑃‘𝑛) = (𝑃‘𝑚)) |
2 | 1 | fveq1d 6776 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → ((𝑃‘𝑛)‘𝑥) = ((𝑃‘𝑚)‘𝑥)) |
3 | 2 | cbvmptv 5187 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑥)) |
4 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑃‘𝑚)‘𝑥) = ((𝑃‘𝑚)‘𝑦)) |
5 | 4 | mpteq2dv 5176 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦))) |
6 | 3, 5 | eqtrid 2790 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦))) |
7 | 6 | rneqd 5847 |
. . . . 5
⊢ (𝑥 = 𝑦 → ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) = ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦))) |
8 | 7 | supeq1d 9205 |
. . . 4
⊢ (𝑥 = 𝑦 → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)), ℝ, < )) |
9 | 8 | cbvmptv 5187 |
. . 3
⊢ (𝑥 ∈ ℝ ↦ sup(ran
(𝑛 ∈ ℕ ↦
((𝑃‘𝑛)‘𝑥)), ℝ, < )) = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)), ℝ, < )) |
10 | | itg2i1fseq.3 |
. . . . 5
⊢ (𝜑 → 𝑃:ℕ⟶dom
∫1) |
11 | 10 | ffvelrnda 6961 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚) ∈ dom
∫1) |
12 | | i1fmbf 24839 |
. . . 4
⊢ ((𝑃‘𝑚) ∈ dom ∫1 → (𝑃‘𝑚) ∈ MblFn) |
13 | 11, 12 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚) ∈ MblFn) |
14 | | i1ff 24840 |
. . . . 5
⊢ ((𝑃‘𝑚) ∈ dom ∫1 → (𝑃‘𝑚):ℝ⟶ℝ) |
15 | 11, 14 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚):ℝ⟶ℝ) |
16 | | itg2i1fseq.4 |
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝
∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) |
17 | 1 | breq2d 5086 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (0𝑝
∘r ≤ (𝑃‘𝑛) ↔ 0𝑝
∘r ≤ (𝑃‘𝑚))) |
18 | | fvoveq1 7298 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑚 + 1))) |
19 | 1, 18 | breq12d 5087 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → ((𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃‘𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)))) |
20 | 17, 19 | anbi12d 631 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → ((0𝑝
∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) ↔ (0𝑝
∘r ≤ (𝑃‘𝑚) ∧ (𝑃‘𝑚) ∘r ≤ (𝑃‘(𝑚 + 1))))) |
21 | 20 | rspccva 3560 |
. . . . . 6
⊢
((∀𝑛 ∈
ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) ∧ 𝑚 ∈ ℕ) →
(0𝑝 ∘r ≤ (𝑃‘𝑚) ∧ (𝑃‘𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)))) |
22 | 16, 21 | sylan 580 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) →
(0𝑝 ∘r ≤ (𝑃‘𝑚) ∧ (𝑃‘𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)))) |
23 | 22 | simpld 495 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 0𝑝
∘r ≤ (𝑃‘𝑚)) |
24 | | 0plef 24836 |
. . . 4
⊢ ((𝑃‘𝑚):ℝ⟶(0[,)+∞) ↔
((𝑃‘𝑚):ℝ⟶ℝ ∧
0𝑝 ∘r ≤ (𝑃‘𝑚))) |
25 | 15, 23, 24 | sylanbrc 583 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚):ℝ⟶(0[,)+∞)) |
26 | 22 | simprd 496 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚) ∘r ≤ (𝑃‘(𝑚 + 1))) |
27 | | rge0ssre 13188 |
. . . . 5
⊢
(0[,)+∞) ⊆ ℝ |
28 | | itg2i1fseq.2 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
29 | 28 | ffvelrnda 6961 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ (0[,)+∞)) |
30 | 27, 29 | sselid 3919 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ℝ) |
31 | | itg2i1fseq.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ MblFn) |
32 | | itg2i1fseq.5 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) |
33 | 31, 28, 10, 16, 32 | itg2i1fseqle 24919 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚) ∘r ≤ 𝐹) |
34 | 15 | ffnd 6601 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚) Fn ℝ) |
35 | 28 | ffnd 6601 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 Fn ℝ) |
36 | 35 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐹 Fn ℝ) |
37 | | reex 10962 |
. . . . . . . . . 10
⊢ ℝ
∈ V |
38 | 37 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ℝ ∈
V) |
39 | | inidm 4152 |
. . . . . . . . 9
⊢ (ℝ
∩ ℝ) = ℝ |
40 | | eqidd 2739 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘𝑚)‘𝑦) = ((𝑃‘𝑚)‘𝑦)) |
41 | | eqidd 2739 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) = (𝐹‘𝑦)) |
42 | 34, 36, 38, 38, 39, 40, 41 | ofrfval 7543 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑃‘𝑚) ∘r ≤ 𝐹 ↔ ∀𝑦 ∈ ℝ ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦))) |
43 | 33, 42 | mpbid 231 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦)) |
44 | 43 | r19.21bi 3134 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦)) |
45 | 44 | an32s 649 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦)) |
46 | 45 | ralrimiva 3103 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦)) |
47 | | brralrspcev 5134 |
. . . 4
⊢ (((𝐹‘𝑦) ∈ ℝ ∧ ∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦)) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ 𝑧) |
48 | 30, 46, 47 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ 𝑧) |
49 | 1 | fveq2d 6778 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (∫2‘(𝑃‘𝑛)) = (∫2‘(𝑃‘𝑚))) |
50 | 49 | cbvmptv 5187 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛))) = (𝑚 ∈ ℕ ↦
(∫2‘(𝑃‘𝑚))) |
51 | 50 | rneqi 5846 |
. . . 4
⊢ ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛))) = ran (𝑚 ∈ ℕ ↦
(∫2‘(𝑃‘𝑚))) |
52 | 51 | supeq1i 9206 |
. . 3
⊢ sup(ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛))), ℝ*, < ) = sup(ran
(𝑚 ∈ ℕ ↦
(∫2‘(𝑃‘𝑚))), ℝ*, <
) |
53 | 9, 13, 25, 26, 48, 52 | itg2mono 24918 |
. 2
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)), ℝ, < ))) = sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛))), ℝ*, <
)) |
54 | 28 | feqmptd 6837 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹‘𝑦))) |
55 | 1 | fveq1d 6776 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → ((𝑃‘𝑛)‘𝑦) = ((𝑃‘𝑚)‘𝑦)) |
56 | 55 | cbvmptv 5187 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)) |
57 | 56 | rneqi 5846 |
. . . . . . . 8
⊢ ran
(𝑛 ∈ ℕ ↦
((𝑃‘𝑛)‘𝑦)) = ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)) |
58 | 57 | supeq1i 9206 |
. . . . . . 7
⊢ sup(ran
(𝑛 ∈ ℕ ↦
((𝑃‘𝑛)‘𝑦)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)), ℝ, < ) |
59 | | nnuz 12621 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
60 | | 1zzd 12351 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 1 ∈
ℤ) |
61 | 15 | ffvelrnda 6961 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘𝑚)‘𝑦) ∈ ℝ) |
62 | 61 | an32s 649 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃‘𝑚)‘𝑦) ∈ ℝ) |
63 | 62, 56 | fmptd 6988 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)):ℕ⟶ℝ) |
64 | | peano2nn 11985 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈
ℕ) |
65 | | ffvelrn 6959 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃:ℕ⟶dom
∫1 ∧ (𝑚
+ 1) ∈ ℕ) → (𝑃‘(𝑚 + 1)) ∈ dom
∫1) |
66 | 10, 64, 65 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)) ∈ dom
∫1) |
67 | | i1ff 24840 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃‘(𝑚 + 1)) ∈ dom ∫1 →
(𝑃‘(𝑚 +
1)):ℝ⟶ℝ) |
68 | 66, 67 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘(𝑚 +
1)):ℝ⟶ℝ) |
69 | 68 | ffnd 6601 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)) Fn ℝ) |
70 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘(𝑚 + 1))‘𝑦) = ((𝑃‘(𝑚 + 1))‘𝑦)) |
71 | 34, 69, 38, 38, 39, 40, 70 | ofrfval 7543 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑃‘𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)) ↔ ∀𝑦 ∈ ℝ ((𝑃‘𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦))) |
72 | 26, 71 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃‘𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦)) |
73 | 72 | r19.21bi 3134 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦)) |
74 | 73 | an32s 649 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃‘𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦)) |
75 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) |
76 | | fvex 6787 |
. . . . . . . . . . . 12
⊢ ((𝑃‘𝑚)‘𝑦) ∈ V |
77 | 55, 75, 76 | fvmpt 6875 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) = ((𝑃‘𝑚)‘𝑦)) |
78 | 77 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) = ((𝑃‘𝑚)‘𝑦)) |
79 | | fveq2 6774 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑚 + 1) → (𝑃‘𝑛) = (𝑃‘(𝑚 + 1))) |
80 | 79 | fveq1d 6776 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑚 + 1) → ((𝑃‘𝑛)‘𝑦) = ((𝑃‘(𝑚 + 1))‘𝑦)) |
81 | | fvex 6787 |
. . . . . . . . . . . . 13
⊢ ((𝑃‘(𝑚 + 1))‘𝑦) ∈ V |
82 | 80, 75, 81 | fvmpt 6875 |
. . . . . . . . . . . 12
⊢ ((𝑚 + 1) ∈ ℕ →
((𝑛 ∈ ℕ ↦
((𝑃‘𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦)) |
83 | 64, 82 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦)) |
84 | 83 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦)) |
85 | 74, 78, 84 | 3brtr4d 5106 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) ≤ ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘(𝑚 + 1))) |
86 | 77 | breq1d 5084 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ((𝑃‘𝑚)‘𝑦) ≤ 𝑧)) |
87 | 86 | ralbiia 3091 |
. . . . . . . . . . 11
⊢
(∀𝑚 ∈
ℕ ((𝑛 ∈ ℕ
↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ 𝑧) |
88 | 87 | rexbii 3181 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
ℝ ∀𝑚 ∈
ℕ ((𝑛 ∈ ℕ
↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ 𝑧) |
89 | 48, 88 | sylibr 233 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) ≤ 𝑧) |
90 | 59, 60, 63, 85, 89 | climsup 15381 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)), ℝ, < )) |
91 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝑃‘𝑛)‘𝑥) = ((𝑃‘𝑛)‘𝑦)) |
92 | 91 | mpteq2dv 5176 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))) |
93 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
94 | 92, 93 | breq12d 5087 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦))) |
95 | 94 | rspccva 3560 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
ℝ (𝑛 ∈ ℕ
↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥) ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) |
96 | 32, 95 | sylan 580 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) |
97 | | climuni 15261 |
. . . . . . . 8
⊢ (((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)), ℝ, < ) ∧ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)), ℝ, < ) = (𝐹‘𝑦)) |
98 | 90, 96, 97 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)), ℝ, < ) = (𝐹‘𝑦)) |
99 | 58, 98 | eqtr3id 2792 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → sup(ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)), ℝ, < ) = (𝐹‘𝑦)) |
100 | 99 | mpteq2dva 5174 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)), ℝ, < )) = (𝑦 ∈ ℝ ↦ (𝐹‘𝑦))) |
101 | 54, 100 | eqtr4d 2781 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)), ℝ, < ))) |
102 | 101, 9 | eqtr4di 2796 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)), ℝ, < ))) |
103 | 102 | fveq2d 6778 |
. 2
⊢ (𝜑 →
(∫2‘𝐹)
= (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)), ℝ, < )))) |
104 | | itg2i1fseq.6 |
. . . . . 6
⊢ 𝑆 = (𝑚 ∈ ℕ ↦
(∫1‘(𝑃‘𝑚))) |
105 | | itg2itg1 24901 |
. . . . . . . 8
⊢ (((𝑃‘𝑚) ∈ dom ∫1 ∧
0𝑝 ∘r ≤ (𝑃‘𝑚)) → (∫2‘(𝑃‘𝑚)) = (∫1‘(𝑃‘𝑚))) |
106 | 11, 23, 105 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) →
(∫2‘(𝑃‘𝑚)) = (∫1‘(𝑃‘𝑚))) |
107 | 106 | mpteq2dva 5174 |
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ ℕ ↦
(∫2‘(𝑃‘𝑚))) = (𝑚 ∈ ℕ ↦
(∫1‘(𝑃‘𝑚)))) |
108 | 104, 107 | eqtr4id 2797 |
. . . . 5
⊢ (𝜑 → 𝑆 = (𝑚 ∈ ℕ ↦
(∫2‘(𝑃‘𝑚)))) |
109 | 108, 50 | eqtr4di 2796 |
. . . 4
⊢ (𝜑 → 𝑆 = (𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛)))) |
110 | 109 | rneqd 5847 |
. . 3
⊢ (𝜑 → ran 𝑆 = ran (𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛)))) |
111 | 110 | supeq1d 9205 |
. 2
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛))), ℝ*, <
)) |
112 | 53, 103, 111 | 3eqtr4d 2788 |
1
⊢ (𝜑 →
(∫2‘𝐹)
= sup(ran 𝑆,
ℝ*, < )) |