MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2i1fseq Structured version   Visualization version   GIF version

Theorem itg2i1fseq 25810
Description: Subject to the conditions coming from mbfi1fseq 25776, the integral of the sequence of simple functions converges to the integral of the target function. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2i1fseq.1 (𝜑𝐹 ∈ MblFn)
itg2i1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2i1fseq.3 (𝜑𝑃:ℕ⟶dom ∫1)
itg2i1fseq.4 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
itg2i1fseq.5 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
itg2i1fseq.6 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
Assertion
Ref Expression
itg2i1fseq (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑚,𝑛,𝑥,𝐹   𝑃,𝑚,𝑛,𝑥   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑆(𝑥,𝑚,𝑛)

Proof of Theorem itg2i1fseq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6920 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑃𝑛) = (𝑃𝑚))
21fveq1d 6922 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑃𝑛)‘𝑥) = ((𝑃𝑚)‘𝑥))
32cbvmptv 5279 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑥))
4 fveq2 6920 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑃𝑚)‘𝑥) = ((𝑃𝑚)‘𝑦))
54mpteq2dv 5268 . . . . . . 7 (𝑥 = 𝑦 → (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)))
63, 5eqtrid 2792 . . . . . 6 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)))
76rneqd 5963 . . . . 5 (𝑥 = 𝑦 → ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)))
87supeq1d 9515 . . . 4 (𝑥 = 𝑦 → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < ))
98cbvmptv 5279 . . 3 (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < )) = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < ))
10 itg2i1fseq.3 . . . . 5 (𝜑𝑃:ℕ⟶dom ∫1)
1110ffvelcdmda 7118 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∈ dom ∫1)
12 i1fmbf 25729 . . . 4 ((𝑃𝑚) ∈ dom ∫1 → (𝑃𝑚) ∈ MblFn)
1311, 12syl 17 . . 3 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∈ MblFn)
14 i1ff 25730 . . . . 5 ((𝑃𝑚) ∈ dom ∫1 → (𝑃𝑚):ℝ⟶ℝ)
1511, 14syl 17 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚):ℝ⟶ℝ)
16 itg2i1fseq.4 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
171breq2d 5178 . . . . . . . 8 (𝑛 = 𝑚 → (0𝑝r ≤ (𝑃𝑛) ↔ 0𝑝r ≤ (𝑃𝑚)))
18 fvoveq1 7471 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑚 + 1)))
191, 18breq12d 5179 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1))))
2017, 19anbi12d 631 . . . . . . 7 (𝑛 = 𝑚 → ((0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) ↔ (0𝑝r ≤ (𝑃𝑚) ∧ (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)))))
2120rspccva 3634 . . . . . 6 ((∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) ∧ 𝑚 ∈ ℕ) → (0𝑝r ≤ (𝑃𝑚) ∧ (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1))))
2216, 21sylan 579 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (0𝑝r ≤ (𝑃𝑚) ∧ (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1))))
2322simpld 494 . . . 4 ((𝜑𝑚 ∈ ℕ) → 0𝑝r ≤ (𝑃𝑚))
24 0plef 25726 . . . 4 ((𝑃𝑚):ℝ⟶(0[,)+∞) ↔ ((𝑃𝑚):ℝ⟶ℝ ∧ 0𝑝r ≤ (𝑃𝑚)))
2515, 23, 24sylanbrc 582 . . 3 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚):ℝ⟶(0[,)+∞))
2622simprd 495 . . 3 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)))
27 rge0ssre 13516 . . . . 5 (0[,)+∞) ⊆ ℝ
28 itg2i1fseq.2 . . . . . 6 (𝜑𝐹:ℝ⟶(0[,)+∞))
2928ffvelcdmda 7118 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,)+∞))
3027, 29sselid 4006 . . . 4 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
31 itg2i1fseq.1 . . . . . . . . 9 (𝜑𝐹 ∈ MblFn)
32 itg2i1fseq.5 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
3331, 28, 10, 16, 32itg2i1fseqle 25809 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∘r𝐹)
3415ffnd 6748 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) Fn ℝ)
3528ffnd 6748 . . . . . . . . . 10 (𝜑𝐹 Fn ℝ)
3635adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝐹 Fn ℝ)
37 reex 11275 . . . . . . . . . 10 ℝ ∈ V
3837a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ℝ ∈ V)
39 inidm 4248 . . . . . . . . 9 (ℝ ∩ ℝ) = ℝ
40 eqidd 2741 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) = ((𝑃𝑚)‘𝑦))
41 eqidd 2741 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
4234, 36, 38, 38, 39, 40, 41ofrfval 7724 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝑃𝑚) ∘r𝐹 ↔ ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦)))
4333, 42mpbid 232 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
4443r19.21bi 3257 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
4544an32s 651 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
4645ralrimiva 3152 . . . 4 ((𝜑𝑦 ∈ ℝ) → ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
47 brralrspcev 5226 . . . 4 (((𝐹𝑦) ∈ ℝ ∧ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦)) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
4830, 46, 47syl2anc 583 . . 3 ((𝜑𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
491fveq2d 6924 . . . . . 6 (𝑛 = 𝑚 → (∫2‘(𝑃𝑛)) = (∫2‘(𝑃𝑚)))
5049cbvmptv 5279 . . . . 5 (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))) = (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚)))
5150rneqi 5962 . . . 4 ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))) = ran (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚)))
5251supeq1i 9516 . . 3 sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))), ℝ*, < ) = sup(ran (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚))), ℝ*, < )
539, 13, 25, 26, 48, 52itg2mono 25808 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < ))) = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))), ℝ*, < ))
5428feqmptd 6990 . . . . 5 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
551fveq1d 6922 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝑃𝑛)‘𝑦) = ((𝑃𝑚)‘𝑦))
5655cbvmptv 5279 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦))
5756rneqi 5962 . . . . . . . 8 ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) = ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦))
5857supeq1i 9516 . . . . . . 7 sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < )
59 nnuz 12946 . . . . . . . . 9 ℕ = (ℤ‘1)
60 1zzd 12674 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℤ)
6115ffvelcdmda 7118 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) ∈ ℝ)
6261an32s 651 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃𝑚)‘𝑦) ∈ ℝ)
6362, 56fmptd 7148 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)):ℕ⟶ℝ)
64 peano2nn 12305 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
65 ffvelcdm 7115 . . . . . . . . . . . . . . . . 17 ((𝑃:ℕ⟶dom ∫1 ∧ (𝑚 + 1) ∈ ℕ) → (𝑃‘(𝑚 + 1)) ∈ dom ∫1)
6610, 64, 65syl2an 595 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)) ∈ dom ∫1)
67 i1ff 25730 . . . . . . . . . . . . . . . 16 ((𝑃‘(𝑚 + 1)) ∈ dom ∫1 → (𝑃‘(𝑚 + 1)):ℝ⟶ℝ)
6866, 67syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)):ℝ⟶ℝ)
6968ffnd 6748 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)) Fn ℝ)
70 eqidd 2741 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘(𝑚 + 1))‘𝑦) = ((𝑃‘(𝑚 + 1))‘𝑦))
7134, 69, 38, 38, 39, 40, 70ofrfval 7724 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)) ↔ ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦)))
7226, 71mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦))
7372r19.21bi 3257 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦))
7473an32s 651 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦))
75 eqid 2740 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))
76 fvex 6933 . . . . . . . . . . . 12 ((𝑃𝑚)‘𝑦) ∈ V
7755, 75, 76fvmpt 7029 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) = ((𝑃𝑚)‘𝑦))
7877adantl 481 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) = ((𝑃𝑚)‘𝑦))
79 fveq2 6920 . . . . . . . . . . . . . 14 (𝑛 = (𝑚 + 1) → (𝑃𝑛) = (𝑃‘(𝑚 + 1)))
8079fveq1d 6922 . . . . . . . . . . . . 13 (𝑛 = (𝑚 + 1) → ((𝑃𝑛)‘𝑦) = ((𝑃‘(𝑚 + 1))‘𝑦))
81 fvex 6933 . . . . . . . . . . . . 13 ((𝑃‘(𝑚 + 1))‘𝑦) ∈ V
8280, 75, 81fvmpt 7029 . . . . . . . . . . . 12 ((𝑚 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦))
8364, 82syl 17 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦))
8483adantl 481 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦))
8574, 78, 843brtr4d 5198 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)))
8677breq1d 5176 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ((𝑃𝑚)‘𝑦) ≤ 𝑧))
8786ralbiia 3097 . . . . . . . . . . 11 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
8887rexbii 3100 . . . . . . . . . 10 (∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
8948, 88sylibr 234 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧)
9059, 60, 63, 85, 89climsup 15718 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ))
91 fveq2 6920 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑃𝑛)‘𝑥) = ((𝑃𝑛)‘𝑦))
9291mpteq2dv 5268 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)))
93 fveq2 6920 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
9492, 93breq12d 5179 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦)))
9594rspccva 3634 . . . . . . . . 9 ((∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥) ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦))
9632, 95sylan 579 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦))
97 climuni 15598 . . . . . . . 8 (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) ∧ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦)) → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) = (𝐹𝑦))
9890, 96, 97syl2anc 583 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) = (𝐹𝑦))
9958, 98eqtr3id 2794 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < ) = (𝐹𝑦))
10099mpteq2dva 5266 . . . . 5 (𝜑 → (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < )) = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
10154, 100eqtr4d 2783 . . . 4 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < )))
102101, 9eqtr4di 2798 . . 3 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < )))
103102fveq2d 6924 . 2 (𝜑 → (∫2𝐹) = (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < ))))
104 itg2i1fseq.6 . . . . . 6 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
105 itg2itg1 25791 . . . . . . . 8 (((𝑃𝑚) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑃𝑚)) → (∫2‘(𝑃𝑚)) = (∫1‘(𝑃𝑚)))
10611, 23, 105syl2anc 583 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (∫2‘(𝑃𝑚)) = (∫1‘(𝑃𝑚)))
107106mpteq2dva 5266 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚))) = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚))))
108104, 107eqtr4id 2799 . . . . 5 (𝜑𝑆 = (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚))))
109108, 50eqtr4di 2798 . . . 4 (𝜑𝑆 = (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))))
110109rneqd 5963 . . 3 (𝜑 → ran 𝑆 = ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))))
111110supeq1d 9515 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))), ℝ*, < ))
11253, 103, 1113eqtr4d 2790 1 (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488   class class class wbr 5166  cmpt 5249  dom cdm 5700  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  r cofr 7713  supcsup 9509  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  cn 12293  [,)cico 13409  cli 15530  MblFncmbf 25668  1citg1 25669  2citg2 25670  0𝑝c0p 25723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cmp 23416  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-0p 25724
This theorem is referenced by:  itg2i1fseq2  25811
  Copyright terms: Public domain W3C validator