MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2i1fseq Structured version   Visualization version   GIF version

Theorem itg2i1fseq 25713
Description: Subject to the conditions coming from mbfi1fseq 25679, the integral of the sequence of simple functions converges to the integral of the target function. (Contributed by Mario Carneiro, 17-Aug-2014.)
Hypotheses
Ref Expression
itg2i1fseq.1 (𝜑𝐹 ∈ MblFn)
itg2i1fseq.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2i1fseq.3 (𝜑𝑃:ℕ⟶dom ∫1)
itg2i1fseq.4 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
itg2i1fseq.5 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
itg2i1fseq.6 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
Assertion
Ref Expression
itg2i1fseq (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ*, < ))
Distinct variable groups:   𝑚,𝑛,𝑥,𝐹   𝑃,𝑚,𝑛,𝑥   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝑆(𝑥,𝑚,𝑛)

Proof of Theorem itg2i1fseq
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑃𝑛) = (𝑃𝑚))
21fveq1d 6883 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑃𝑛)‘𝑥) = ((𝑃𝑚)‘𝑥))
32cbvmptv 5230 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑥))
4 fveq2 6881 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑃𝑚)‘𝑥) = ((𝑃𝑚)‘𝑦))
54mpteq2dv 5220 . . . . . . 7 (𝑥 = 𝑦 → (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)))
63, 5eqtrid 2783 . . . . . 6 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)))
76rneqd 5923 . . . . 5 (𝑥 = 𝑦 → ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)))
87supeq1d 9463 . . . 4 (𝑥 = 𝑦 → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < ))
98cbvmptv 5230 . . 3 (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < )) = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < ))
10 itg2i1fseq.3 . . . . 5 (𝜑𝑃:ℕ⟶dom ∫1)
1110ffvelcdmda 7079 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∈ dom ∫1)
12 i1fmbf 25633 . . . 4 ((𝑃𝑚) ∈ dom ∫1 → (𝑃𝑚) ∈ MblFn)
1311, 12syl 17 . . 3 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∈ MblFn)
14 i1ff 25634 . . . . 5 ((𝑃𝑚) ∈ dom ∫1 → (𝑃𝑚):ℝ⟶ℝ)
1511, 14syl 17 . . . 4 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚):ℝ⟶ℝ)
16 itg2i1fseq.4 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))))
171breq2d 5136 . . . . . . . 8 (𝑛 = 𝑚 → (0𝑝r ≤ (𝑃𝑛) ↔ 0𝑝r ≤ (𝑃𝑚)))
18 fvoveq1 7433 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑚 + 1)))
191, 18breq12d 5137 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1))))
2017, 19anbi12d 632 . . . . . . 7 (𝑛 = 𝑚 → ((0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) ↔ (0𝑝r ≤ (𝑃𝑚) ∧ (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)))))
2120rspccva 3605 . . . . . 6 ((∀𝑛 ∈ ℕ (0𝑝r ≤ (𝑃𝑛) ∧ (𝑃𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) ∧ 𝑚 ∈ ℕ) → (0𝑝r ≤ (𝑃𝑚) ∧ (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1))))
2216, 21sylan 580 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (0𝑝r ≤ (𝑃𝑚) ∧ (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1))))
2322simpld 494 . . . 4 ((𝜑𝑚 ∈ ℕ) → 0𝑝r ≤ (𝑃𝑚))
24 0plef 25630 . . . 4 ((𝑃𝑚):ℝ⟶(0[,)+∞) ↔ ((𝑃𝑚):ℝ⟶ℝ ∧ 0𝑝r ≤ (𝑃𝑚)))
2515, 23, 24sylanbrc 583 . . 3 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚):ℝ⟶(0[,)+∞))
2622simprd 495 . . 3 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)))
27 rge0ssre 13478 . . . . 5 (0[,)+∞) ⊆ ℝ
28 itg2i1fseq.2 . . . . . 6 (𝜑𝐹:ℝ⟶(0[,)+∞))
2928ffvelcdmda 7079 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (0[,)+∞))
3027, 29sselid 3961 . . . 4 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℝ)
31 itg2i1fseq.1 . . . . . . . . 9 (𝜑𝐹 ∈ MblFn)
32 itg2i1fseq.5 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥))
3331, 28, 10, 16, 32itg2i1fseqle 25712 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) ∘r𝐹)
3415ffnd 6712 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (𝑃𝑚) Fn ℝ)
3528ffnd 6712 . . . . . . . . . 10 (𝜑𝐹 Fn ℝ)
3635adantr 480 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → 𝐹 Fn ℝ)
37 reex 11225 . . . . . . . . . 10 ℝ ∈ V
3837a1i 11 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → ℝ ∈ V)
39 inidm 4207 . . . . . . . . 9 (ℝ ∩ ℝ) = ℝ
40 eqidd 2737 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) = ((𝑃𝑚)‘𝑦))
41 eqidd 2737 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) = (𝐹𝑦))
4234, 36, 38, 38, 39, 40, 41ofrfval 7686 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝑃𝑚) ∘r𝐹 ↔ ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦)))
4333, 42mpbid 232 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
4443r19.21bi 3238 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
4544an32s 652 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
4645ralrimiva 3133 . . . 4 ((𝜑𝑦 ∈ ℝ) → ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦))
47 brralrspcev 5184 . . . 4 (((𝐹𝑦) ∈ ℝ ∧ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ (𝐹𝑦)) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
4830, 46, 47syl2anc 584 . . 3 ((𝜑𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
491fveq2d 6885 . . . . . 6 (𝑛 = 𝑚 → (∫2‘(𝑃𝑛)) = (∫2‘(𝑃𝑚)))
5049cbvmptv 5230 . . . . 5 (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))) = (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚)))
5150rneqi 5922 . . . 4 ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))) = ran (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚)))
5251supeq1i 9464 . . 3 sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))), ℝ*, < ) = sup(ran (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚))), ℝ*, < )
539, 13, 25, 26, 48, 52itg2mono 25711 . 2 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < ))) = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))), ℝ*, < ))
5428feqmptd 6952 . . . . 5 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
551fveq1d 6883 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝑃𝑛)‘𝑦) = ((𝑃𝑚)‘𝑦))
5655cbvmptv 5230 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦))
5756rneqi 5922 . . . . . . . 8 ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) = ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦))
5857supeq1i 9464 . . . . . . 7 sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < )
59 nnuz 12900 . . . . . . . . 9 ℕ = (ℤ‘1)
60 1zzd 12628 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℤ)
6115ffvelcdmda 7079 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) ∈ ℝ)
6261an32s 652 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃𝑚)‘𝑦) ∈ ℝ)
6362, 56fmptd 7109 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)):ℕ⟶ℝ)
64 peano2nn 12257 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ → (𝑚 + 1) ∈ ℕ)
65 ffvelcdm 7076 . . . . . . . . . . . . . . . . 17 ((𝑃:ℕ⟶dom ∫1 ∧ (𝑚 + 1) ∈ ℕ) → (𝑃‘(𝑚 + 1)) ∈ dom ∫1)
6610, 64, 65syl2an 596 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)) ∈ dom ∫1)
67 i1ff 25634 . . . . . . . . . . . . . . . 16 ((𝑃‘(𝑚 + 1)) ∈ dom ∫1 → (𝑃‘(𝑚 + 1)):ℝ⟶ℝ)
6866, 67syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)):ℝ⟶ℝ)
6968ffnd 6712 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)) Fn ℝ)
70 eqidd 2737 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘(𝑚 + 1))‘𝑦) = ((𝑃‘(𝑚 + 1))‘𝑦))
7134, 69, 38, 38, 39, 40, 70ofrfval 7686 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((𝑃𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)) ↔ ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦)))
7226, 71mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦))
7372r19.21bi 3238 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦))
7473an32s 652 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦))
75 eqid 2736 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))
76 fvex 6894 . . . . . . . . . . . 12 ((𝑃𝑚)‘𝑦) ∈ V
7755, 75, 76fvmpt 6991 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) = ((𝑃𝑚)‘𝑦))
7877adantl 481 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) = ((𝑃𝑚)‘𝑦))
79 fveq2 6881 . . . . . . . . . . . . . 14 (𝑛 = (𝑚 + 1) → (𝑃𝑛) = (𝑃‘(𝑚 + 1)))
8079fveq1d 6883 . . . . . . . . . . . . 13 (𝑛 = (𝑚 + 1) → ((𝑃𝑛)‘𝑦) = ((𝑃‘(𝑚 + 1))‘𝑦))
81 fvex 6894 . . . . . . . . . . . . 13 ((𝑃‘(𝑚 + 1))‘𝑦) ∈ V
8280, 75, 81fvmpt 6991 . . . . . . . . . . . 12 ((𝑚 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦))
8364, 82syl 17 . . . . . . . . . . 11 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦))
8483adantl 481 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦))
8574, 78, 843brtr4d 5156 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘(𝑚 + 1)))
8677breq1d 5134 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ((𝑃𝑚)‘𝑦) ≤ 𝑧))
8786ralbiia 3081 . . . . . . . . . . 11 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
8887rexbii 3084 . . . . . . . . . 10 (∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃𝑚)‘𝑦) ≤ 𝑧)
8948, 88sylibr 234 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦))‘𝑚) ≤ 𝑧)
9059, 60, 63, 85, 89climsup 15691 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ))
91 fveq2 6881 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑃𝑛)‘𝑥) = ((𝑃𝑛)‘𝑦))
9291mpteq2dv 5220 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)))
93 fveq2 6881 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
9492, 93breq12d 5137 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦)))
9594rspccva 3605 . . . . . . . . 9 ((∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)) ⇝ (𝐹𝑥) ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦))
9632, 95sylan 580 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦))
97 climuni 15573 . . . . . . . 8 (((𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) ∧ (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)) ⇝ (𝐹𝑦)) → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) = (𝐹𝑦))
9890, 96, 97syl2anc 584 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑦)), ℝ, < ) = (𝐹𝑦))
9958, 98eqtr3id 2785 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < ) = (𝐹𝑦))
10099mpteq2dva 5219 . . . . 5 (𝜑 → (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < )) = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
10154, 100eqtr4d 2774 . . . 4 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃𝑚)‘𝑦)), ℝ, < )))
102101, 9eqtr4di 2789 . . 3 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < )))
103102fveq2d 6885 . 2 (𝜑 → (∫2𝐹) = (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃𝑛)‘𝑥)), ℝ, < ))))
104 itg2i1fseq.6 . . . . . 6 𝑆 = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚)))
105 itg2itg1 25694 . . . . . . . 8 (((𝑃𝑚) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑃𝑚)) → (∫2‘(𝑃𝑚)) = (∫1‘(𝑃𝑚)))
10611, 23, 105syl2anc 584 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (∫2‘(𝑃𝑚)) = (∫1‘(𝑃𝑚)))
107106mpteq2dva 5219 . . . . . 6 (𝜑 → (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚))) = (𝑚 ∈ ℕ ↦ (∫1‘(𝑃𝑚))))
108104, 107eqtr4id 2790 . . . . 5 (𝜑𝑆 = (𝑚 ∈ ℕ ↦ (∫2‘(𝑃𝑚))))
109108, 50eqtr4di 2789 . . . 4 (𝜑𝑆 = (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))))
110109rneqd 5923 . . 3 (𝜑 → ran 𝑆 = ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))))
111110supeq1d 9463 . 2 (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝑃𝑛))), ℝ*, < ))
11253, 103, 1113eqtr4d 2781 1 (𝜑 → (∫2𝐹) = sup(ran 𝑆, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  Vcvv 3464   class class class wbr 5124  cmpt 5206  dom cdm 5659  ran crn 5660   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  r cofr 7675  supcsup 9457  cr 11133  0cc0 11134  1c1 11135   + caddc 11137  +∞cpnf 11271  *cxr 11273   < clt 11274  cle 11275  cn 12245  [,)cico 13369  cli 15505  MblFncmbf 25572  1citg1 25573  2citg2 25574  0𝑝c0p 25627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cc 10454  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-acn 9961  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-rest 17441  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-top 22837  df-topon 22854  df-bases 22889  df-cmp 23330  df-ovol 25422  df-vol 25423  df-mbf 25577  df-itg1 25578  df-itg2 25579  df-0p 25628
This theorem is referenced by:  itg2i1fseq2  25714
  Copyright terms: Public domain W3C validator