| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑃‘𝑛) = (𝑃‘𝑚)) |
| 2 | 1 | fveq1d 6883 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → ((𝑃‘𝑛)‘𝑥) = ((𝑃‘𝑚)‘𝑥)) |
| 3 | 2 | cbvmptv 5230 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑥)) |
| 4 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑃‘𝑚)‘𝑥) = ((𝑃‘𝑚)‘𝑦)) |
| 5 | 4 | mpteq2dv 5220 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦))) |
| 6 | 3, 5 | eqtrid 2783 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦))) |
| 7 | 6 | rneqd 5923 |
. . . . 5
⊢ (𝑥 = 𝑦 → ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) = ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦))) |
| 8 | 7 | supeq1d 9463 |
. . . 4
⊢ (𝑥 = 𝑦 → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)), ℝ, < )) |
| 9 | 8 | cbvmptv 5230 |
. . 3
⊢ (𝑥 ∈ ℝ ↦ sup(ran
(𝑛 ∈ ℕ ↦
((𝑃‘𝑛)‘𝑥)), ℝ, < )) = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)), ℝ, < )) |
| 10 | | itg2i1fseq.3 |
. . . . 5
⊢ (𝜑 → 𝑃:ℕ⟶dom
∫1) |
| 11 | 10 | ffvelcdmda 7079 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚) ∈ dom
∫1) |
| 12 | | i1fmbf 25633 |
. . . 4
⊢ ((𝑃‘𝑚) ∈ dom ∫1 → (𝑃‘𝑚) ∈ MblFn) |
| 13 | 11, 12 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚) ∈ MblFn) |
| 14 | | i1ff 25634 |
. . . . 5
⊢ ((𝑃‘𝑚) ∈ dom ∫1 → (𝑃‘𝑚):ℝ⟶ℝ) |
| 15 | 11, 14 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚):ℝ⟶ℝ) |
| 16 | | itg2i1fseq.4 |
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝
∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)))) |
| 17 | 1 | breq2d 5136 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (0𝑝
∘r ≤ (𝑃‘𝑛) ↔ 0𝑝
∘r ≤ (𝑃‘𝑚))) |
| 18 | | fvoveq1 7433 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑚 + 1))) |
| 19 | 1, 18 | breq12d 5137 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → ((𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃‘𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)))) |
| 20 | 17, 19 | anbi12d 632 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → ((0𝑝
∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) ↔ (0𝑝
∘r ≤ (𝑃‘𝑚) ∧ (𝑃‘𝑚) ∘r ≤ (𝑃‘(𝑚 + 1))))) |
| 21 | 20 | rspccva 3605 |
. . . . . 6
⊢
((∀𝑛 ∈
ℕ (0𝑝 ∘r ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘r ≤ (𝑃‘(𝑛 + 1))) ∧ 𝑚 ∈ ℕ) →
(0𝑝 ∘r ≤ (𝑃‘𝑚) ∧ (𝑃‘𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)))) |
| 22 | 16, 21 | sylan 580 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) →
(0𝑝 ∘r ≤ (𝑃‘𝑚) ∧ (𝑃‘𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)))) |
| 23 | 22 | simpld 494 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 0𝑝
∘r ≤ (𝑃‘𝑚)) |
| 24 | | 0plef 25630 |
. . . 4
⊢ ((𝑃‘𝑚):ℝ⟶(0[,)+∞) ↔
((𝑃‘𝑚):ℝ⟶ℝ ∧
0𝑝 ∘r ≤ (𝑃‘𝑚))) |
| 25 | 15, 23, 24 | sylanbrc 583 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚):ℝ⟶(0[,)+∞)) |
| 26 | 22 | simprd 495 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚) ∘r ≤ (𝑃‘(𝑚 + 1))) |
| 27 | | rge0ssre 13478 |
. . . . 5
⊢
(0[,)+∞) ⊆ ℝ |
| 28 | | itg2i1fseq.2 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
| 29 | 28 | ffvelcdmda 7079 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ (0[,)+∞)) |
| 30 | 27, 29 | sselid 3961 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ℝ) |
| 31 | | itg2i1fseq.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ MblFn) |
| 32 | | itg2i1fseq.5 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) |
| 33 | 31, 28, 10, 16, 32 | itg2i1fseqle 25712 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚) ∘r ≤ 𝐹) |
| 34 | 15 | ffnd 6712 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚) Fn ℝ) |
| 35 | 28 | ffnd 6712 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 Fn ℝ) |
| 36 | 35 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐹 Fn ℝ) |
| 37 | | reex 11225 |
. . . . . . . . . 10
⊢ ℝ
∈ V |
| 38 | 37 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ℝ ∈
V) |
| 39 | | inidm 4207 |
. . . . . . . . 9
⊢ (ℝ
∩ ℝ) = ℝ |
| 40 | | eqidd 2737 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘𝑚)‘𝑦) = ((𝑃‘𝑚)‘𝑦)) |
| 41 | | eqidd 2737 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) = (𝐹‘𝑦)) |
| 42 | 34, 36, 38, 38, 39, 40, 41 | ofrfval 7686 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑃‘𝑚) ∘r ≤ 𝐹 ↔ ∀𝑦 ∈ ℝ ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦))) |
| 43 | 33, 42 | mpbid 232 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦)) |
| 44 | 43 | r19.21bi 3238 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦)) |
| 45 | 44 | an32s 652 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦)) |
| 46 | 45 | ralrimiva 3133 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦)) |
| 47 | | brralrspcev 5184 |
. . . 4
⊢ (((𝐹‘𝑦) ∈ ℝ ∧ ∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦)) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ 𝑧) |
| 48 | 30, 46, 47 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ 𝑧) |
| 49 | 1 | fveq2d 6885 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (∫2‘(𝑃‘𝑛)) = (∫2‘(𝑃‘𝑚))) |
| 50 | 49 | cbvmptv 5230 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛))) = (𝑚 ∈ ℕ ↦
(∫2‘(𝑃‘𝑚))) |
| 51 | 50 | rneqi 5922 |
. . . 4
⊢ ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛))) = ran (𝑚 ∈ ℕ ↦
(∫2‘(𝑃‘𝑚))) |
| 52 | 51 | supeq1i 9464 |
. . 3
⊢ sup(ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛))), ℝ*, < ) = sup(ran
(𝑚 ∈ ℕ ↦
(∫2‘(𝑃‘𝑚))), ℝ*, <
) |
| 53 | 9, 13, 25, 26, 48, 52 | itg2mono 25711 |
. 2
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)), ℝ, < ))) = sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛))), ℝ*, <
)) |
| 54 | 28 | feqmptd 6952 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹‘𝑦))) |
| 55 | 1 | fveq1d 6883 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → ((𝑃‘𝑛)‘𝑦) = ((𝑃‘𝑚)‘𝑦)) |
| 56 | 55 | cbvmptv 5230 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)) |
| 57 | 56 | rneqi 5922 |
. . . . . . . 8
⊢ ran
(𝑛 ∈ ℕ ↦
((𝑃‘𝑛)‘𝑦)) = ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)) |
| 58 | 57 | supeq1i 9464 |
. . . . . . 7
⊢ sup(ran
(𝑛 ∈ ℕ ↦
((𝑃‘𝑛)‘𝑦)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)), ℝ, < ) |
| 59 | | nnuz 12900 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
| 60 | | 1zzd 12628 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 1 ∈
ℤ) |
| 61 | 15 | ffvelcdmda 7079 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘𝑚)‘𝑦) ∈ ℝ) |
| 62 | 61 | an32s 652 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃‘𝑚)‘𝑦) ∈ ℝ) |
| 63 | 62, 56 | fmptd 7109 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)):ℕ⟶ℝ) |
| 64 | | peano2nn 12257 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈
ℕ) |
| 65 | | ffvelcdm 7076 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃:ℕ⟶dom
∫1 ∧ (𝑚
+ 1) ∈ ℕ) → (𝑃‘(𝑚 + 1)) ∈ dom
∫1) |
| 66 | 10, 64, 65 | syl2an 596 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)) ∈ dom
∫1) |
| 67 | | i1ff 25634 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃‘(𝑚 + 1)) ∈ dom ∫1 →
(𝑃‘(𝑚 +
1)):ℝ⟶ℝ) |
| 68 | 66, 67 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘(𝑚 +
1)):ℝ⟶ℝ) |
| 69 | 68 | ffnd 6712 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)) Fn ℝ) |
| 70 | | eqidd 2737 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘(𝑚 + 1))‘𝑦) = ((𝑃‘(𝑚 + 1))‘𝑦)) |
| 71 | 34, 69, 38, 38, 39, 40, 70 | ofrfval 7686 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑃‘𝑚) ∘r ≤ (𝑃‘(𝑚 + 1)) ↔ ∀𝑦 ∈ ℝ ((𝑃‘𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦))) |
| 72 | 26, 71 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃‘𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦)) |
| 73 | 72 | r19.21bi 3238 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦)) |
| 74 | 73 | an32s 652 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃‘𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦)) |
| 75 | | eqid 2736 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) |
| 76 | | fvex 6894 |
. . . . . . . . . . . 12
⊢ ((𝑃‘𝑚)‘𝑦) ∈ V |
| 77 | 55, 75, 76 | fvmpt 6991 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) = ((𝑃‘𝑚)‘𝑦)) |
| 78 | 77 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) = ((𝑃‘𝑚)‘𝑦)) |
| 79 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑚 + 1) → (𝑃‘𝑛) = (𝑃‘(𝑚 + 1))) |
| 80 | 79 | fveq1d 6883 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑚 + 1) → ((𝑃‘𝑛)‘𝑦) = ((𝑃‘(𝑚 + 1))‘𝑦)) |
| 81 | | fvex 6894 |
. . . . . . . . . . . . 13
⊢ ((𝑃‘(𝑚 + 1))‘𝑦) ∈ V |
| 82 | 80, 75, 81 | fvmpt 6991 |
. . . . . . . . . . . 12
⊢ ((𝑚 + 1) ∈ ℕ →
((𝑛 ∈ ℕ ↦
((𝑃‘𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦)) |
| 83 | 64, 82 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦)) |
| 84 | 83 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦)) |
| 85 | 74, 78, 84 | 3brtr4d 5156 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) ≤ ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘(𝑚 + 1))) |
| 86 | 77 | breq1d 5134 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ((𝑃‘𝑚)‘𝑦) ≤ 𝑧)) |
| 87 | 86 | ralbiia 3081 |
. . . . . . . . . . 11
⊢
(∀𝑚 ∈
ℕ ((𝑛 ∈ ℕ
↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ 𝑧) |
| 88 | 87 | rexbii 3084 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
ℝ ∀𝑚 ∈
ℕ ((𝑛 ∈ ℕ
↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ 𝑧) |
| 89 | 48, 88 | sylibr 234 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) ≤ 𝑧) |
| 90 | 59, 60, 63, 85, 89 | climsup 15691 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)), ℝ, < )) |
| 91 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝑃‘𝑛)‘𝑥) = ((𝑃‘𝑛)‘𝑦)) |
| 92 | 91 | mpteq2dv 5220 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))) |
| 93 | | fveq2 6881 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 94 | 92, 93 | breq12d 5137 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦))) |
| 95 | 94 | rspccva 3605 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
ℝ (𝑛 ∈ ℕ
↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥) ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) |
| 96 | 32, 95 | sylan 580 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) |
| 97 | | climuni 15573 |
. . . . . . . 8
⊢ (((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)), ℝ, < ) ∧ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)), ℝ, < ) = (𝐹‘𝑦)) |
| 98 | 90, 96, 97 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)), ℝ, < ) = (𝐹‘𝑦)) |
| 99 | 58, 98 | eqtr3id 2785 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → sup(ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)), ℝ, < ) = (𝐹‘𝑦)) |
| 100 | 99 | mpteq2dva 5219 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)), ℝ, < )) = (𝑦 ∈ ℝ ↦ (𝐹‘𝑦))) |
| 101 | 54, 100 | eqtr4d 2774 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)), ℝ, < ))) |
| 102 | 101, 9 | eqtr4di 2789 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)), ℝ, < ))) |
| 103 | 102 | fveq2d 6885 |
. 2
⊢ (𝜑 →
(∫2‘𝐹)
= (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)), ℝ, < )))) |
| 104 | | itg2i1fseq.6 |
. . . . . 6
⊢ 𝑆 = (𝑚 ∈ ℕ ↦
(∫1‘(𝑃‘𝑚))) |
| 105 | | itg2itg1 25694 |
. . . . . . . 8
⊢ (((𝑃‘𝑚) ∈ dom ∫1 ∧
0𝑝 ∘r ≤ (𝑃‘𝑚)) → (∫2‘(𝑃‘𝑚)) = (∫1‘(𝑃‘𝑚))) |
| 106 | 11, 23, 105 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) →
(∫2‘(𝑃‘𝑚)) = (∫1‘(𝑃‘𝑚))) |
| 107 | 106 | mpteq2dva 5219 |
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ ℕ ↦
(∫2‘(𝑃‘𝑚))) = (𝑚 ∈ ℕ ↦
(∫1‘(𝑃‘𝑚)))) |
| 108 | 104, 107 | eqtr4id 2790 |
. . . . 5
⊢ (𝜑 → 𝑆 = (𝑚 ∈ ℕ ↦
(∫2‘(𝑃‘𝑚)))) |
| 109 | 108, 50 | eqtr4di 2789 |
. . . 4
⊢ (𝜑 → 𝑆 = (𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛)))) |
| 110 | 109 | rneqd 5923 |
. . 3
⊢ (𝜑 → ran 𝑆 = ran (𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛)))) |
| 111 | 110 | supeq1d 9463 |
. 2
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛))), ℝ*, <
)) |
| 112 | 53, 103, 111 | 3eqtr4d 2781 |
1
⊢ (𝜑 →
(∫2‘𝐹)
= sup(ran 𝑆,
ℝ*, < )) |