MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfu2 Structured version   Visualization version   GIF version

Theorem idfu2 17832
Description: Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
idfuval.i 𝐼 = (idfunc𝐶)
idfuval.b 𝐵 = (Base‘𝐶)
idfuval.c (𝜑𝐶 ∈ Cat)
idfuval.h 𝐻 = (Hom ‘𝐶)
idfu2nd.x (𝜑𝑋𝐵)
idfu2nd.y (𝜑𝑌𝐵)
idfu2.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
idfu2 (𝜑 → ((𝑋(2nd𝐼)𝑌)‘𝐹) = 𝐹)

Proof of Theorem idfu2
StepHypRef Expression
1 idfuval.i . . . 4 𝐼 = (idfunc𝐶)
2 idfuval.b . . . 4 𝐵 = (Base‘𝐶)
3 idfuval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 idfuval.h . . . 4 𝐻 = (Hom ‘𝐶)
5 idfu2nd.x . . . 4 (𝜑𝑋𝐵)
6 idfu2nd.y . . . 4 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 6idfu2nd 17831 . . 3 (𝜑 → (𝑋(2nd𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌)))
87fveq1d 6893 . 2 (𝜑 → ((𝑋(2nd𝐼)𝑌)‘𝐹) = (( I ↾ (𝑋𝐻𝑌))‘𝐹))
9 idfu2.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
10 fvresi 7173 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → (( I ↾ (𝑋𝐻𝑌))‘𝐹) = 𝐹)
119, 10syl 17 . 2 (𝜑 → (( I ↾ (𝑋𝐻𝑌))‘𝐹) = 𝐹)
128, 11eqtrd 2772 1 (𝜑 → ((𝑋(2nd𝐼)𝑌)‘𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106   I cid 5573  cres 5678  cfv 6543  (class class class)co 7411  2nd c2nd 7976  Basecbs 17148  Hom chom 17212  Catccat 17612  idfunccidfu 17809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-2nd 7978  df-idfu 17813
This theorem is referenced by:  idfucl  17835
  Copyright terms: Public domain W3C validator