| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idfu2 | Structured version Visualization version GIF version | ||
| Description: Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 28-Jan-2017.) |
| Ref | Expression |
|---|---|
| idfuval.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idfuval.b | ⊢ 𝐵 = (Base‘𝐶) |
| idfuval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| idfuval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| idfu2nd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| idfu2nd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| idfu2.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
| Ref | Expression |
|---|---|
| idfu2 | ⊢ (𝜑 → ((𝑋(2nd ‘𝐼)𝑌)‘𝐹) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfuval.i | . . . 4 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 2 | idfuval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | idfuval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | idfuval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 5 | idfu2nd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | idfu2nd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | idfu2nd 17784 | . . 3 ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌))) |
| 8 | 7 | fveq1d 6824 | . 2 ⊢ (𝜑 → ((𝑋(2nd ‘𝐼)𝑌)‘𝐹) = (( I ↾ (𝑋𝐻𝑌))‘𝐹)) |
| 9 | idfu2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 10 | fvresi 7107 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (( I ↾ (𝑋𝐻𝑌))‘𝐹) = 𝐹) | |
| 11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → (( I ↾ (𝑋𝐻𝑌))‘𝐹) = 𝐹) |
| 12 | 8, 11 | eqtrd 2766 | 1 ⊢ (𝜑 → ((𝑋(2nd ‘𝐼)𝑌)‘𝐹) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 I cid 5508 ↾ cres 5616 ‘cfv 6481 (class class class)co 7346 2nd c2nd 7920 Basecbs 17120 Hom chom 17172 Catccat 17570 idfunccidfu 17762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-2nd 7922 df-idfu 17766 |
| This theorem is referenced by: idfucl 17788 cofid2a 49153 |
| Copyright terms: Public domain | W3C validator |