MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfu2 Structured version   Visualization version   GIF version

Theorem idfu2 17923
Description: Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
idfuval.i 𝐼 = (idfunc𝐶)
idfuval.b 𝐵 = (Base‘𝐶)
idfuval.c (𝜑𝐶 ∈ Cat)
idfuval.h 𝐻 = (Hom ‘𝐶)
idfu2nd.x (𝜑𝑋𝐵)
idfu2nd.y (𝜑𝑌𝐵)
idfu2.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
idfu2 (𝜑 → ((𝑋(2nd𝐼)𝑌)‘𝐹) = 𝐹)

Proof of Theorem idfu2
StepHypRef Expression
1 idfuval.i . . . 4 𝐼 = (idfunc𝐶)
2 idfuval.b . . . 4 𝐵 = (Base‘𝐶)
3 idfuval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 idfuval.h . . . 4 𝐻 = (Hom ‘𝐶)
5 idfu2nd.x . . . 4 (𝜑𝑋𝐵)
6 idfu2nd.y . . . 4 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 6idfu2nd 17922 . . 3 (𝜑 → (𝑋(2nd𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌)))
87fveq1d 6908 . 2 (𝜑 → ((𝑋(2nd𝐼)𝑌)‘𝐹) = (( I ↾ (𝑋𝐻𝑌))‘𝐹))
9 idfu2.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
10 fvresi 7193 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → (( I ↾ (𝑋𝐻𝑌))‘𝐹) = 𝐹)
119, 10syl 17 . 2 (𝜑 → (( I ↾ (𝑋𝐻𝑌))‘𝐹) = 𝐹)
128, 11eqtrd 2777 1 (𝜑 → ((𝑋(2nd𝐼)𝑌)‘𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108   I cid 5577  cres 5687  cfv 6561  (class class class)co 7431  2nd c2nd 8013  Basecbs 17247  Hom chom 17308  Catccat 17707  idfunccidfu 17900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-2nd 8015  df-idfu 17904
This theorem is referenced by:  idfucl  17926
  Copyright terms: Public domain W3C validator