MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfu2 Structured version   Visualization version   GIF version

Theorem idfu2 17896
Description: Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
idfuval.i 𝐼 = (idfunc𝐶)
idfuval.b 𝐵 = (Base‘𝐶)
idfuval.c (𝜑𝐶 ∈ Cat)
idfuval.h 𝐻 = (Hom ‘𝐶)
idfu2nd.x (𝜑𝑋𝐵)
idfu2nd.y (𝜑𝑌𝐵)
idfu2.f (𝜑𝐹 ∈ (𝑋𝐻𝑌))
Assertion
Ref Expression
idfu2 (𝜑 → ((𝑋(2nd𝐼)𝑌)‘𝐹) = 𝐹)

Proof of Theorem idfu2
StepHypRef Expression
1 idfuval.i . . . 4 𝐼 = (idfunc𝐶)
2 idfuval.b . . . 4 𝐵 = (Base‘𝐶)
3 idfuval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 idfuval.h . . . 4 𝐻 = (Hom ‘𝐶)
5 idfu2nd.x . . . 4 (𝜑𝑋𝐵)
6 idfu2nd.y . . . 4 (𝜑𝑌𝐵)
71, 2, 3, 4, 5, 6idfu2nd 17895 . . 3 (𝜑 → (𝑋(2nd𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌)))
87fveq1d 6883 . 2 (𝜑 → ((𝑋(2nd𝐼)𝑌)‘𝐹) = (( I ↾ (𝑋𝐻𝑌))‘𝐹))
9 idfu2.f . . 3 (𝜑𝐹 ∈ (𝑋𝐻𝑌))
10 fvresi 7170 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → (( I ↾ (𝑋𝐻𝑌))‘𝐹) = 𝐹)
119, 10syl 17 . 2 (𝜑 → (( I ↾ (𝑋𝐻𝑌))‘𝐹) = 𝐹)
128, 11eqtrd 2771 1 (𝜑 → ((𝑋(2nd𝐼)𝑌)‘𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   I cid 5552  cres 5661  cfv 6536  (class class class)co 7410  2nd c2nd 7992  Basecbs 17233  Hom chom 17287  Catccat 17681  idfunccidfu 17873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-2nd 7994  df-idfu 17877
This theorem is referenced by:  idfucl  17899
  Copyright terms: Public domain W3C validator