MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfu1st Structured version   Visualization version   GIF version

Theorem idfu1st 17786
Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
idfuval.i 𝐼 = (idfunc𝐶)
idfuval.b 𝐵 = (Base‘𝐶)
idfuval.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
idfu1st (𝜑 → (1st𝐼) = ( I ↾ 𝐵))

Proof of Theorem idfu1st
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 idfuval.i . . . 4 𝐼 = (idfunc𝐶)
2 idfuval.b . . . 4 𝐵 = (Base‘𝐶)
3 idfuval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 eqid 2729 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
51, 2, 3, 4idfuval 17783 . . 3 (𝜑𝐼 = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))⟩)
65fveq2d 6826 . 2 (𝜑 → (1st𝐼) = (1st ‘⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))⟩))
72fvexi 6836 . . . 4 𝐵 ∈ V
8 resiexg 7845 . . . 4 (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V)
97, 8ax-mp 5 . . 3 ( I ↾ 𝐵) ∈ V
107, 7xpex 7689 . . . 4 (𝐵 × 𝐵) ∈ V
1110mptex 7159 . . 3 (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧))) ∈ V
129, 11op1st 7932 . 2 (1st ‘⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))⟩) = ( I ↾ 𝐵)
136, 12eqtrdi 2780 1 (𝜑 → (1st𝐼) = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  cop 4583  cmpt 5173   I cid 5513   × cxp 5617  cres 5621  cfv 6482  1st c1st 7922  Basecbs 17120  Hom chom 17172  Catccat 17570  idfunccidfu 17762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-1st 7924  df-idfu 17766
This theorem is referenced by:  idfu1  17787  cofulid  17797  cofurid  17798  catciso  18018  curf2ndf  18153  idfu1stf1o  49084  idfu1sta  49086
  Copyright terms: Public domain W3C validator