| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idfu1st | Structured version Visualization version GIF version | ||
| Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| idfuval.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idfuval.b | ⊢ 𝐵 = (Base‘𝐶) |
| idfuval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Ref | Expression |
|---|---|
| idfu1st | ⊢ (𝜑 → (1st ‘𝐼) = ( I ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfuval.i | . . . 4 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 2 | idfuval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | idfuval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | eqid 2731 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 5 | 1, 2, 3, 4 | idfuval 17783 | . . 3 ⊢ (𝜑 → 𝐼 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))〉) |
| 6 | 5 | fveq2d 6826 | . 2 ⊢ (𝜑 → (1st ‘𝐼) = (1st ‘〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))〉)) |
| 7 | 2 | fvexi 6836 | . . . 4 ⊢ 𝐵 ∈ V |
| 8 | resiexg 7842 | . . . 4 ⊢ (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ ( I ↾ 𝐵) ∈ V |
| 10 | 7, 7 | xpex 7686 | . . . 4 ⊢ (𝐵 × 𝐵) ∈ V |
| 11 | 10 | mptex 7157 | . . 3 ⊢ (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧))) ∈ V |
| 12 | 9, 11 | op1st 7929 | . 2 ⊢ (1st ‘〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))〉) = ( I ↾ 𝐵) |
| 13 | 6, 12 | eqtrdi 2782 | 1 ⊢ (𝜑 → (1st ‘𝐼) = ( I ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 ↦ cmpt 5170 I cid 5508 × cxp 5612 ↾ cres 5616 ‘cfv 6481 1st c1st 7919 Basecbs 17120 Hom chom 17172 Catccat 17570 idfunccidfu 17762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-1st 7921 df-idfu 17766 |
| This theorem is referenced by: idfu1 17787 cofulid 17797 cofurid 17798 catciso 18018 curf2ndf 18153 idfu1stf1o 49139 idfu1sta 49141 |
| Copyright terms: Public domain | W3C validator |