MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfu1st Structured version   Visualization version   GIF version

Theorem idfu1st 17828
Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
idfuval.i 𝐼 = (idfunc𝐶)
idfuval.b 𝐵 = (Base‘𝐶)
idfuval.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
idfu1st (𝜑 → (1st𝐼) = ( I ↾ 𝐵))

Proof of Theorem idfu1st
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 idfuval.i . . . 4 𝐼 = (idfunc𝐶)
2 idfuval.b . . . 4 𝐵 = (Base‘𝐶)
3 idfuval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 eqid 2732 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
51, 2, 3, 4idfuval 17825 . . 3 (𝜑𝐼 = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))⟩)
65fveq2d 6895 . 2 (𝜑 → (1st𝐼) = (1st ‘⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))⟩))
72fvexi 6905 . . . 4 𝐵 ∈ V
8 resiexg 7904 . . . 4 (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V)
97, 8ax-mp 5 . . 3 ( I ↾ 𝐵) ∈ V
107, 7xpex 7739 . . . 4 (𝐵 × 𝐵) ∈ V
1110mptex 7224 . . 3 (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧))) ∈ V
129, 11op1st 7982 . 2 (1st ‘⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))⟩) = ( I ↾ 𝐵)
136, 12eqtrdi 2788 1 (𝜑 → (1st𝐼) = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3474  cop 4634  cmpt 5231   I cid 5573   × cxp 5674  cres 5678  cfv 6543  1st c1st 7972  Basecbs 17143  Hom chom 17207  Catccat 17607  idfunccidfu 17804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-1st 7974  df-idfu 17808
This theorem is referenced by:  idfu1  17829  cofulid  17839  cofurid  17840  catciso  18060  curf2ndf  18199
  Copyright terms: Public domain W3C validator