Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idfu1st | Structured version Visualization version GIF version |
Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
idfuval.i | ⊢ 𝐼 = (idfunc‘𝐶) |
idfuval.b | ⊢ 𝐵 = (Base‘𝐶) |
idfuval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
Ref | Expression |
---|---|
idfu1st | ⊢ (𝜑 → (1st ‘𝐼) = ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idfuval.i | . . . 4 ⊢ 𝐼 = (idfunc‘𝐶) | |
2 | idfuval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | idfuval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | eqid 2738 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
5 | 1, 2, 3, 4 | idfuval 17507 | . . 3 ⊢ (𝜑 → 𝐼 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))〉) |
6 | 5 | fveq2d 6760 | . 2 ⊢ (𝜑 → (1st ‘𝐼) = (1st ‘〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))〉)) |
7 | 2 | fvexi 6770 | . . . 4 ⊢ 𝐵 ∈ V |
8 | resiexg 7735 | . . . 4 ⊢ (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ ( I ↾ 𝐵) ∈ V |
10 | 7, 7 | xpex 7581 | . . . 4 ⊢ (𝐵 × 𝐵) ∈ V |
11 | 10 | mptex 7081 | . . 3 ⊢ (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧))) ∈ V |
12 | 9, 11 | op1st 7812 | . 2 ⊢ (1st ‘〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))〉) = ( I ↾ 𝐵) |
13 | 6, 12 | eqtrdi 2795 | 1 ⊢ (𝜑 → (1st ‘𝐼) = ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 ↦ cmpt 5153 I cid 5479 × cxp 5578 ↾ cres 5582 ‘cfv 6418 1st c1st 7802 Basecbs 16840 Hom chom 16899 Catccat 17290 idfunccidfu 17486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-1st 7804 df-idfu 17490 |
This theorem is referenced by: idfu1 17511 cofulid 17521 cofurid 17522 catciso 17742 curf2ndf 17881 |
Copyright terms: Public domain | W3C validator |