| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idfu1st | Structured version Visualization version GIF version | ||
| Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| idfuval.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idfuval.b | ⊢ 𝐵 = (Base‘𝐶) |
| idfuval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Ref | Expression |
|---|---|
| idfu1st | ⊢ (𝜑 → (1st ‘𝐼) = ( I ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfuval.i | . . . 4 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 2 | idfuval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | idfuval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | eqid 2735 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 5 | 1, 2, 3, 4 | idfuval 17889 | . . 3 ⊢ (𝜑 → 𝐼 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))〉) |
| 6 | 5 | fveq2d 6880 | . 2 ⊢ (𝜑 → (1st ‘𝐼) = (1st ‘〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))〉)) |
| 7 | 2 | fvexi 6890 | . . . 4 ⊢ 𝐵 ∈ V |
| 8 | resiexg 7908 | . . . 4 ⊢ (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ ( I ↾ 𝐵) ∈ V |
| 10 | 7, 7 | xpex 7747 | . . . 4 ⊢ (𝐵 × 𝐵) ∈ V |
| 11 | 10 | mptex 7215 | . . 3 ⊢ (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧))) ∈ V |
| 12 | 9, 11 | op1st 7996 | . 2 ⊢ (1st ‘〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))〉) = ( I ↾ 𝐵) |
| 13 | 6, 12 | eqtrdi 2786 | 1 ⊢ (𝜑 → (1st ‘𝐼) = ( I ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 〈cop 4607 ↦ cmpt 5201 I cid 5547 × cxp 5652 ↾ cres 5656 ‘cfv 6531 1st c1st 7986 Basecbs 17228 Hom chom 17282 Catccat 17676 idfunccidfu 17868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-1st 7988 df-idfu 17872 |
| This theorem is referenced by: idfu1 17893 cofulid 17903 cofurid 17904 catciso 18124 curf2ndf 18259 idfu1sta 49060 |
| Copyright terms: Public domain | W3C validator |