Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idfu1st | Structured version Visualization version GIF version |
Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
idfuval.i | ⊢ 𝐼 = (idfunc‘𝐶) |
idfuval.b | ⊢ 𝐵 = (Base‘𝐶) |
idfuval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
Ref | Expression |
---|---|
idfu1st | ⊢ (𝜑 → (1st ‘𝐼) = ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idfuval.i | . . . 4 ⊢ 𝐼 = (idfunc‘𝐶) | |
2 | idfuval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | idfuval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | eqid 2758 | . . . 4 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
5 | 1, 2, 3, 4 | idfuval 17218 | . . 3 ⊢ (𝜑 → 𝐼 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))〉) |
6 | 5 | fveq2d 6667 | . 2 ⊢ (𝜑 → (1st ‘𝐼) = (1st ‘〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))〉)) |
7 | 2 | fvexi 6677 | . . . 4 ⊢ 𝐵 ∈ V |
8 | resiexg 7630 | . . . 4 ⊢ (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ ( I ↾ 𝐵) ∈ V |
10 | 7, 7 | xpex 7480 | . . . 4 ⊢ (𝐵 × 𝐵) ∈ V |
11 | 10 | mptex 6983 | . . 3 ⊢ (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧))) ∈ V |
12 | 9, 11 | op1st 7707 | . 2 ⊢ (1st ‘〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))〉) = ( I ↾ 𝐵) |
13 | 6, 12 | eqtrdi 2809 | 1 ⊢ (𝜑 → (1st ‘𝐼) = ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 Vcvv 3409 〈cop 4531 ↦ cmpt 5116 I cid 5433 × cxp 5526 ↾ cres 5530 ‘cfv 6340 1st c1st 7697 Basecbs 16554 Hom chom 16647 Catccat 17006 idfunccidfu 17197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-1st 7699 df-idfu 17201 |
This theorem is referenced by: idfu1 17222 cofulid 17232 cofurid 17233 catciso 17446 curf2ndf 17576 |
Copyright terms: Public domain | W3C validator |