MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfu1st Structured version   Visualization version   GIF version

Theorem idfu1st 17510
Description: Value of the object part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
idfuval.i 𝐼 = (idfunc𝐶)
idfuval.b 𝐵 = (Base‘𝐶)
idfuval.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
idfu1st (𝜑 → (1st𝐼) = ( I ↾ 𝐵))

Proof of Theorem idfu1st
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 idfuval.i . . . 4 𝐼 = (idfunc𝐶)
2 idfuval.b . . . 4 𝐵 = (Base‘𝐶)
3 idfuval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 eqid 2738 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
51, 2, 3, 4idfuval 17507 . . 3 (𝜑𝐼 = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))⟩)
65fveq2d 6760 . 2 (𝜑 → (1st𝐼) = (1st ‘⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))⟩))
72fvexi 6770 . . . 4 𝐵 ∈ V
8 resiexg 7735 . . . 4 (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V)
97, 8ax-mp 5 . . 3 ( I ↾ 𝐵) ∈ V
107, 7xpex 7581 . . . 4 (𝐵 × 𝐵) ∈ V
1110mptex 7081 . . 3 (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧))) ∈ V
129, 11op1st 7812 . 2 (1st ‘⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))⟩) = ( I ↾ 𝐵)
136, 12eqtrdi 2795 1 (𝜑 → (1st𝐼) = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  cop 4564  cmpt 5153   I cid 5479   × cxp 5578  cres 5582  cfv 6418  1st c1st 7802  Basecbs 16840  Hom chom 16899  Catccat 17290  idfunccidfu 17486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-1st 7804  df-idfu 17490
This theorem is referenced by:  idfu1  17511  cofulid  17521  cofurid  17522  catciso  17742  curf2ndf  17881
  Copyright terms: Public domain W3C validator