MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfu2nd Structured version   Visualization version   GIF version

Theorem idfu2nd 17802
Description: Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
idfuval.i 𝐼 = (idfunc𝐶)
idfuval.b 𝐵 = (Base‘𝐶)
idfuval.c (𝜑𝐶 ∈ Cat)
idfuval.h 𝐻 = (Hom ‘𝐶)
idfu2nd.x (𝜑𝑋𝐵)
idfu2nd.y (𝜑𝑌𝐵)
Assertion
Ref Expression
idfu2nd (𝜑 → (𝑋(2nd𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌)))

Proof of Theorem idfu2nd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7356 . 2 (𝑋(2nd𝐼)𝑌) = ((2nd𝐼)‘⟨𝑋, 𝑌⟩)
2 idfuval.i . . . . . 6 𝐼 = (idfunc𝐶)
3 idfuval.b . . . . . 6 𝐵 = (Base‘𝐶)
4 idfuval.c . . . . . 6 (𝜑𝐶 ∈ Cat)
5 idfuval.h . . . . . 6 𝐻 = (Hom ‘𝐶)
62, 3, 4, 5idfuval 17801 . . . . 5 (𝜑𝐼 = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
76fveq2d 6830 . . . 4 (𝜑 → (2nd𝐼) = (2nd ‘⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩))
83fvexi 6840 . . . . . 6 𝐵 ∈ V
9 resiexg 7852 . . . . . 6 (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V)
108, 9ax-mp 5 . . . . 5 ( I ↾ 𝐵) ∈ V
118, 8xpex 7693 . . . . . 6 (𝐵 × 𝐵) ∈ V
1211mptex 7163 . . . . 5 (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧))) ∈ V
1310, 12op2nd 7940 . . . 4 (2nd ‘⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))
147, 13eqtrdi 2780 . . 3 (𝜑 → (2nd𝐼) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧))))
15 simpr 484 . . . . . 6 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → 𝑧 = ⟨𝑋, 𝑌⟩)
1615fveq2d 6830 . . . . 5 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐻𝑧) = (𝐻‘⟨𝑋, 𝑌⟩))
17 df-ov 7356 . . . . 5 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
1816, 17eqtr4di 2782 . . . 4 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐻𝑧) = (𝑋𝐻𝑌))
1918reseq2d 5934 . . 3 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → ( I ↾ (𝐻𝑧)) = ( I ↾ (𝑋𝐻𝑌)))
20 idfu2nd.x . . . 4 (𝜑𝑋𝐵)
21 idfu2nd.y . . . 4 (𝜑𝑌𝐵)
2220, 21opelxpd 5662 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
23 ovex 7386 . . . 4 (𝑋𝐻𝑌) ∈ V
24 resiexg 7852 . . . 4 ((𝑋𝐻𝑌) ∈ V → ( I ↾ (𝑋𝐻𝑌)) ∈ V)
2523, 24mp1i 13 . . 3 (𝜑 → ( I ↾ (𝑋𝐻𝑌)) ∈ V)
2614, 19, 22, 25fvmptd 6941 . 2 (𝜑 → ((2nd𝐼)‘⟨𝑋, 𝑌⟩) = ( I ↾ (𝑋𝐻𝑌)))
271, 26eqtrid 2776 1 (𝜑 → (𝑋(2nd𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cop 4585  cmpt 5176   I cid 5517   × cxp 5621  cres 5625  cfv 6486  (class class class)co 7353  2nd c2nd 7930  Basecbs 17138  Hom chom 17190  Catccat 17588  idfunccidfu 17780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-2nd 7932  df-idfu 17784
This theorem is referenced by:  idfu2  17803  idfucl  17806  cofulid  17815  cofurid  17816  idffth  17860  ressffth  17865  catciso  18036  idfu2nda  49089  cofidf2a  49103
  Copyright terms: Public domain W3C validator