| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idfu2nd | Structured version Visualization version GIF version | ||
| Description: Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| idfuval.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idfuval.b | ⊢ 𝐵 = (Base‘𝐶) |
| idfuval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| idfuval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| idfu2nd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| idfu2nd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| idfu2nd | ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7390 | . 2 ⊢ (𝑋(2nd ‘𝐼)𝑌) = ((2nd ‘𝐼)‘〈𝑋, 𝑌〉) | |
| 2 | idfuval.i | . . . . . 6 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 3 | idfuval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | idfuval.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | idfuval.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 6 | 2, 3, 4, 5 | idfuval 17838 | . . . . 5 ⊢ (𝜑 → 𝐼 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉) |
| 7 | 6 | fveq2d 6862 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐼) = (2nd ‘〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉)) |
| 8 | 3 | fvexi 6872 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 9 | resiexg 7888 | . . . . . 6 ⊢ (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V) | |
| 10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝐵) ∈ V |
| 11 | 8, 8 | xpex 7729 | . . . . . 6 ⊢ (𝐵 × 𝐵) ∈ V |
| 12 | 11 | mptex 7197 | . . . . 5 ⊢ (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))) ∈ V |
| 13 | 10, 12 | op2nd 7977 | . . . 4 ⊢ (2nd ‘〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))) |
| 14 | 7, 13 | eqtrdi 2780 | . . 3 ⊢ (𝜑 → (2nd ‘𝐼) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))) |
| 15 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → 𝑧 = 〈𝑋, 𝑌〉) | |
| 16 | 15 | fveq2d 6862 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐻‘𝑧) = (𝐻‘〈𝑋, 𝑌〉)) |
| 17 | df-ov 7390 | . . . . 5 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
| 18 | 16, 17 | eqtr4di 2782 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐻‘𝑧) = (𝑋𝐻𝑌)) |
| 19 | 18 | reseq2d 5950 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → ( I ↾ (𝐻‘𝑧)) = ( I ↾ (𝑋𝐻𝑌))) |
| 20 | idfu2nd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 21 | idfu2nd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 22 | 20, 21 | opelxpd 5677 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 23 | ovex 7420 | . . . 4 ⊢ (𝑋𝐻𝑌) ∈ V | |
| 24 | resiexg 7888 | . . . 4 ⊢ ((𝑋𝐻𝑌) ∈ V → ( I ↾ (𝑋𝐻𝑌)) ∈ V) | |
| 25 | 23, 24 | mp1i 13 | . . 3 ⊢ (𝜑 → ( I ↾ (𝑋𝐻𝑌)) ∈ V) |
| 26 | 14, 19, 22, 25 | fvmptd 6975 | . 2 ⊢ (𝜑 → ((2nd ‘𝐼)‘〈𝑋, 𝑌〉) = ( I ↾ (𝑋𝐻𝑌))) |
| 27 | 1, 26 | eqtrid 2776 | 1 ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 〈cop 4595 ↦ cmpt 5188 I cid 5532 × cxp 5636 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 2nd c2nd 7967 Basecbs 17179 Hom chom 17231 Catccat 17625 idfunccidfu 17817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-2nd 7969 df-idfu 17821 |
| This theorem is referenced by: idfu2 17840 idfucl 17843 cofulid 17852 cofurid 17853 idffth 17897 ressffth 17902 catciso 18073 idfu2nda 49092 cofidf2a 49106 |
| Copyright terms: Public domain | W3C validator |