| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idfu2nd | Structured version Visualization version GIF version | ||
| Description: Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| idfuval.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idfuval.b | ⊢ 𝐵 = (Base‘𝐶) |
| idfuval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| idfuval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| idfu2nd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| idfu2nd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| idfu2nd | ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7355 | . 2 ⊢ (𝑋(2nd ‘𝐼)𝑌) = ((2nd ‘𝐼)‘〈𝑋, 𝑌〉) | |
| 2 | idfuval.i | . . . . . 6 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 3 | idfuval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | idfuval.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | idfuval.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 6 | 2, 3, 4, 5 | idfuval 17785 | . . . . 5 ⊢ (𝜑 → 𝐼 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉) |
| 7 | 6 | fveq2d 6832 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐼) = (2nd ‘〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉)) |
| 8 | 3 | fvexi 6842 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 9 | resiexg 7848 | . . . . . 6 ⊢ (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V) | |
| 10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝐵) ∈ V |
| 11 | 8, 8 | xpex 7692 | . . . . . 6 ⊢ (𝐵 × 𝐵) ∈ V |
| 12 | 11 | mptex 7163 | . . . . 5 ⊢ (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))) ∈ V |
| 13 | 10, 12 | op2nd 7936 | . . . 4 ⊢ (2nd ‘〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))) |
| 14 | 7, 13 | eqtrdi 2784 | . . 3 ⊢ (𝜑 → (2nd ‘𝐼) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))) |
| 15 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → 𝑧 = 〈𝑋, 𝑌〉) | |
| 16 | 15 | fveq2d 6832 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐻‘𝑧) = (𝐻‘〈𝑋, 𝑌〉)) |
| 17 | df-ov 7355 | . . . . 5 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
| 18 | 16, 17 | eqtr4di 2786 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐻‘𝑧) = (𝑋𝐻𝑌)) |
| 19 | 18 | reseq2d 5932 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → ( I ↾ (𝐻‘𝑧)) = ( I ↾ (𝑋𝐻𝑌))) |
| 20 | idfu2nd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 21 | idfu2nd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 22 | 20, 21 | opelxpd 5658 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 23 | ovex 7385 | . . . 4 ⊢ (𝑋𝐻𝑌) ∈ V | |
| 24 | resiexg 7848 | . . . 4 ⊢ ((𝑋𝐻𝑌) ∈ V → ( I ↾ (𝑋𝐻𝑌)) ∈ V) | |
| 25 | 23, 24 | mp1i 13 | . . 3 ⊢ (𝜑 → ( I ↾ (𝑋𝐻𝑌)) ∈ V) |
| 26 | 14, 19, 22, 25 | fvmptd 6942 | . 2 ⊢ (𝜑 → ((2nd ‘𝐼)‘〈𝑋, 𝑌〉) = ( I ↾ (𝑋𝐻𝑌))) |
| 27 | 1, 26 | eqtrid 2780 | 1 ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 〈cop 4581 ↦ cmpt 5174 I cid 5513 × cxp 5617 ↾ cres 5621 ‘cfv 6486 (class class class)co 7352 2nd c2nd 7926 Basecbs 17122 Hom chom 17174 Catccat 17572 idfunccidfu 17764 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-2nd 7928 df-idfu 17768 |
| This theorem is referenced by: idfu2 17787 idfucl 17790 cofulid 17799 cofurid 17800 idffth 17844 ressffth 17849 catciso 18020 idfu2nda 49228 cofidf2a 49242 |
| Copyright terms: Public domain | W3C validator |