![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idfu2nd | Structured version Visualization version GIF version |
Description: Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
idfuval.i | ⊢ 𝐼 = (idfunc‘𝐶) |
idfuval.b | ⊢ 𝐵 = (Base‘𝐶) |
idfuval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
idfuval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
idfu2nd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
idfu2nd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
idfu2nd | ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7411 | . 2 ⊢ (𝑋(2nd ‘𝐼)𝑌) = ((2nd ‘𝐼)‘⟨𝑋, 𝑌⟩) | |
2 | idfuval.i | . . . . . 6 ⊢ 𝐼 = (idfunc‘𝐶) | |
3 | idfuval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
4 | idfuval.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | idfuval.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
6 | 2, 3, 4, 5 | idfuval 17825 | . . . . 5 ⊢ (𝜑 → 𝐼 = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))⟩) |
7 | 6 | fveq2d 6895 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐼) = (2nd ‘⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))⟩)) |
8 | 3 | fvexi 6905 | . . . . . 6 ⊢ 𝐵 ∈ V |
9 | resiexg 7904 | . . . . . 6 ⊢ (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝐵) ∈ V |
11 | 8, 8 | xpex 7739 | . . . . . 6 ⊢ (𝐵 × 𝐵) ∈ V |
12 | 11 | mptex 7224 | . . . . 5 ⊢ (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))) ∈ V |
13 | 10, 12 | op2nd 7983 | . . . 4 ⊢ (2nd ‘⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))⟩) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))) |
14 | 7, 13 | eqtrdi 2788 | . . 3 ⊢ (𝜑 → (2nd ‘𝐼) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))) |
15 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 = ⟨𝑋, 𝑌⟩) → 𝑧 = ⟨𝑋, 𝑌⟩) | |
16 | 15 | fveq2d 6895 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = ⟨𝑋, 𝑌⟩) → (𝐻‘𝑧) = (𝐻‘⟨𝑋, 𝑌⟩)) |
17 | df-ov 7411 | . . . . 5 ⊢ (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩) | |
18 | 16, 17 | eqtr4di 2790 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = ⟨𝑋, 𝑌⟩) → (𝐻‘𝑧) = (𝑋𝐻𝑌)) |
19 | 18 | reseq2d 5981 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = ⟨𝑋, 𝑌⟩) → ( I ↾ (𝐻‘𝑧)) = ( I ↾ (𝑋𝐻𝑌))) |
20 | idfu2nd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
21 | idfu2nd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
22 | 20, 21 | opelxpd 5715 | . . 3 ⊢ (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵)) |
23 | ovex 7441 | . . . 4 ⊢ (𝑋𝐻𝑌) ∈ V | |
24 | resiexg 7904 | . . . 4 ⊢ ((𝑋𝐻𝑌) ∈ V → ( I ↾ (𝑋𝐻𝑌)) ∈ V) | |
25 | 23, 24 | mp1i 13 | . . 3 ⊢ (𝜑 → ( I ↾ (𝑋𝐻𝑌)) ∈ V) |
26 | 14, 19, 22, 25 | fvmptd 7005 | . 2 ⊢ (𝜑 → ((2nd ‘𝐼)‘⟨𝑋, 𝑌⟩) = ( I ↾ (𝑋𝐻𝑌))) |
27 | 1, 26 | eqtrid 2784 | 1 ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⟨cop 4634 ↦ cmpt 5231 I cid 5573 × cxp 5674 ↾ cres 5678 ‘cfv 6543 (class class class)co 7408 2nd c2nd 7973 Basecbs 17143 Hom chom 17207 Catccat 17607 idfunccidfu 17804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-2nd 7975 df-idfu 17808 |
This theorem is referenced by: idfu2 17827 idfucl 17830 cofulid 17839 cofurid 17840 idffth 17883 ressffth 17888 catciso 18060 |
Copyright terms: Public domain | W3C validator |