MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfu2nd Structured version   Visualization version   GIF version

Theorem idfu2nd 17781
Description: Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
idfuval.i 𝐼 = (idfunc𝐶)
idfuval.b 𝐵 = (Base‘𝐶)
idfuval.c (𝜑𝐶 ∈ Cat)
idfuval.h 𝐻 = (Hom ‘𝐶)
idfu2nd.x (𝜑𝑋𝐵)
idfu2nd.y (𝜑𝑌𝐵)
Assertion
Ref Expression
idfu2nd (𝜑 → (𝑋(2nd𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌)))

Proof of Theorem idfu2nd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7349 . 2 (𝑋(2nd𝐼)𝑌) = ((2nd𝐼)‘⟨𝑋, 𝑌⟩)
2 idfuval.i . . . . . 6 𝐼 = (idfunc𝐶)
3 idfuval.b . . . . . 6 𝐵 = (Base‘𝐶)
4 idfuval.c . . . . . 6 (𝜑𝐶 ∈ Cat)
5 idfuval.h . . . . . 6 𝐻 = (Hom ‘𝐶)
62, 3, 4, 5idfuval 17780 . . . . 5 (𝜑𝐼 = ⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩)
76fveq2d 6826 . . . 4 (𝜑 → (2nd𝐼) = (2nd ‘⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩))
83fvexi 6836 . . . . . 6 𝐵 ∈ V
9 resiexg 7842 . . . . . 6 (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V)
108, 9ax-mp 5 . . . . 5 ( I ↾ 𝐵) ∈ V
118, 8xpex 7686 . . . . . 6 (𝐵 × 𝐵) ∈ V
1211mptex 7157 . . . . 5 (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧))) ∈ V
1310, 12op2nd 7930 . . . 4 (2nd ‘⟨( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))⟩) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧)))
147, 13eqtrdi 2782 . . 3 (𝜑 → (2nd𝐼) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻𝑧))))
15 simpr 484 . . . . . 6 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → 𝑧 = ⟨𝑋, 𝑌⟩)
1615fveq2d 6826 . . . . 5 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐻𝑧) = (𝐻‘⟨𝑋, 𝑌⟩))
17 df-ov 7349 . . . . 5 (𝑋𝐻𝑌) = (𝐻‘⟨𝑋, 𝑌⟩)
1816, 17eqtr4di 2784 . . . 4 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → (𝐻𝑧) = (𝑋𝐻𝑌))
1918reseq2d 5928 . . 3 ((𝜑𝑧 = ⟨𝑋, 𝑌⟩) → ( I ↾ (𝐻𝑧)) = ( I ↾ (𝑋𝐻𝑌)))
20 idfu2nd.x . . . 4 (𝜑𝑋𝐵)
21 idfu2nd.y . . . 4 (𝜑𝑌𝐵)
2220, 21opelxpd 5655 . . 3 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ (𝐵 × 𝐵))
23 ovex 7379 . . . 4 (𝑋𝐻𝑌) ∈ V
24 resiexg 7842 . . . 4 ((𝑋𝐻𝑌) ∈ V → ( I ↾ (𝑋𝐻𝑌)) ∈ V)
2523, 24mp1i 13 . . 3 (𝜑 → ( I ↾ (𝑋𝐻𝑌)) ∈ V)
2614, 19, 22, 25fvmptd 6936 . 2 (𝜑 → ((2nd𝐼)‘⟨𝑋, 𝑌⟩) = ( I ↾ (𝑋𝐻𝑌)))
271, 26eqtrid 2778 1 (𝜑 → (𝑋(2nd𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cop 4582  cmpt 5172   I cid 5510   × cxp 5614  cres 5618  cfv 6481  (class class class)co 7346  2nd c2nd 7920  Basecbs 17117  Hom chom 17169  Catccat 17567  idfunccidfu 17759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-2nd 7922  df-idfu 17763
This theorem is referenced by:  idfu2  17782  idfucl  17785  cofulid  17794  cofurid  17795  idffth  17839  ressffth  17844  catciso  18015  idfu2nda  49134  cofidf2a  49148
  Copyright terms: Public domain W3C validator