![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idfu2nd | Structured version Visualization version GIF version |
Description: Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
idfuval.i | ⊢ 𝐼 = (idfunc‘𝐶) |
idfuval.b | ⊢ 𝐵 = (Base‘𝐶) |
idfuval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
idfuval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
idfu2nd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
idfu2nd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
idfu2nd | ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7451 | . 2 ⊢ (𝑋(2nd ‘𝐼)𝑌) = ((2nd ‘𝐼)‘〈𝑋, 𝑌〉) | |
2 | idfuval.i | . . . . . 6 ⊢ 𝐼 = (idfunc‘𝐶) | |
3 | idfuval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
4 | idfuval.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | idfuval.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
6 | 2, 3, 4, 5 | idfuval 17940 | . . . . 5 ⊢ (𝜑 → 𝐼 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉) |
7 | 6 | fveq2d 6924 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐼) = (2nd ‘〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉)) |
8 | 3 | fvexi 6934 | . . . . . 6 ⊢ 𝐵 ∈ V |
9 | resiexg 7952 | . . . . . 6 ⊢ (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝐵) ∈ V |
11 | 8, 8 | xpex 7788 | . . . . . 6 ⊢ (𝐵 × 𝐵) ∈ V |
12 | 11 | mptex 7260 | . . . . 5 ⊢ (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))) ∈ V |
13 | 10, 12 | op2nd 8039 | . . . 4 ⊢ (2nd ‘〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))) |
14 | 7, 13 | eqtrdi 2796 | . . 3 ⊢ (𝜑 → (2nd ‘𝐼) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))) |
15 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → 𝑧 = 〈𝑋, 𝑌〉) | |
16 | 15 | fveq2d 6924 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐻‘𝑧) = (𝐻‘〈𝑋, 𝑌〉)) |
17 | df-ov 7451 | . . . . 5 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
18 | 16, 17 | eqtr4di 2798 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐻‘𝑧) = (𝑋𝐻𝑌)) |
19 | 18 | reseq2d 6009 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → ( I ↾ (𝐻‘𝑧)) = ( I ↾ (𝑋𝐻𝑌))) |
20 | idfu2nd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
21 | idfu2nd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
22 | 20, 21 | opelxpd 5739 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
23 | ovex 7481 | . . . 4 ⊢ (𝑋𝐻𝑌) ∈ V | |
24 | resiexg 7952 | . . . 4 ⊢ ((𝑋𝐻𝑌) ∈ V → ( I ↾ (𝑋𝐻𝑌)) ∈ V) | |
25 | 23, 24 | mp1i 13 | . . 3 ⊢ (𝜑 → ( I ↾ (𝑋𝐻𝑌)) ∈ V) |
26 | 14, 19, 22, 25 | fvmptd 7036 | . 2 ⊢ (𝜑 → ((2nd ‘𝐼)‘〈𝑋, 𝑌〉) = ( I ↾ (𝑋𝐻𝑌))) |
27 | 1, 26 | eqtrid 2792 | 1 ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 ↦ cmpt 5249 I cid 5592 × cxp 5698 ↾ cres 5702 ‘cfv 6573 (class class class)co 7448 2nd c2nd 8029 Basecbs 17258 Hom chom 17322 Catccat 17722 idfunccidfu 17919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-2nd 8031 df-idfu 17923 |
This theorem is referenced by: idfu2 17942 idfucl 17945 cofulid 17954 cofurid 17955 idffth 18000 ressffth 18005 catciso 18178 |
Copyright terms: Public domain | W3C validator |