| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idfu2nd | Structured version Visualization version GIF version | ||
| Description: Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| idfuval.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idfuval.b | ⊢ 𝐵 = (Base‘𝐶) |
| idfuval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| idfuval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| idfu2nd.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| idfu2nd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| idfu2nd | ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 7413 | . 2 ⊢ (𝑋(2nd ‘𝐼)𝑌) = ((2nd ‘𝐼)‘〈𝑋, 𝑌〉) | |
| 2 | idfuval.i | . . . . . 6 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 3 | idfuval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 4 | idfuval.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 5 | idfuval.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 6 | 2, 3, 4, 5 | idfuval 17894 | . . . . 5 ⊢ (𝜑 → 𝐼 = 〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉) |
| 7 | 6 | fveq2d 6885 | . . . 4 ⊢ (𝜑 → (2nd ‘𝐼) = (2nd ‘〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉)) |
| 8 | 3 | fvexi 6895 | . . . . . 6 ⊢ 𝐵 ∈ V |
| 9 | resiexg 7913 | . . . . . 6 ⊢ (𝐵 ∈ V → ( I ↾ 𝐵) ∈ V) | |
| 10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ ( I ↾ 𝐵) ∈ V |
| 11 | 8, 8 | xpex 7752 | . . . . . 6 ⊢ (𝐵 × 𝐵) ∈ V |
| 12 | 11 | mptex 7220 | . . . . 5 ⊢ (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))) ∈ V |
| 13 | 10, 12 | op2nd 8002 | . . . 4 ⊢ (2nd ‘〈( I ↾ 𝐵), (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))〉) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧))) |
| 14 | 7, 13 | eqtrdi 2787 | . . 3 ⊢ (𝜑 → (2nd ‘𝐼) = (𝑧 ∈ (𝐵 × 𝐵) ↦ ( I ↾ (𝐻‘𝑧)))) |
| 15 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → 𝑧 = 〈𝑋, 𝑌〉) | |
| 16 | 15 | fveq2d 6885 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐻‘𝑧) = (𝐻‘〈𝑋, 𝑌〉)) |
| 17 | df-ov 7413 | . . . . 5 ⊢ (𝑋𝐻𝑌) = (𝐻‘〈𝑋, 𝑌〉) | |
| 18 | 16, 17 | eqtr4di 2789 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → (𝐻‘𝑧) = (𝑋𝐻𝑌)) |
| 19 | 18 | reseq2d 5971 | . . 3 ⊢ ((𝜑 ∧ 𝑧 = 〈𝑋, 𝑌〉) → ( I ↾ (𝐻‘𝑧)) = ( I ↾ (𝑋𝐻𝑌))) |
| 20 | idfu2nd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 21 | idfu2nd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 22 | 20, 21 | opelxpd 5698 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝐵 × 𝐵)) |
| 23 | ovex 7443 | . . . 4 ⊢ (𝑋𝐻𝑌) ∈ V | |
| 24 | resiexg 7913 | . . . 4 ⊢ ((𝑋𝐻𝑌) ∈ V → ( I ↾ (𝑋𝐻𝑌)) ∈ V) | |
| 25 | 23, 24 | mp1i 13 | . . 3 ⊢ (𝜑 → ( I ↾ (𝑋𝐻𝑌)) ∈ V) |
| 26 | 14, 19, 22, 25 | fvmptd 6998 | . 2 ⊢ (𝜑 → ((2nd ‘𝐼)‘〈𝑋, 𝑌〉) = ( I ↾ (𝑋𝐻𝑌))) |
| 27 | 1, 26 | eqtrid 2783 | 1 ⊢ (𝜑 → (𝑋(2nd ‘𝐼)𝑌) = ( I ↾ (𝑋𝐻𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 〈cop 4612 ↦ cmpt 5206 I cid 5552 × cxp 5657 ↾ cres 5661 ‘cfv 6536 (class class class)co 7410 2nd c2nd 7992 Basecbs 17233 Hom chom 17287 Catccat 17681 idfunccidfu 17873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-2nd 7994 df-idfu 17877 |
| This theorem is referenced by: idfu2 17896 idfucl 17899 cofulid 17908 cofurid 17909 idffth 17953 ressffth 17958 catciso 18129 idfu2nda 49029 |
| Copyright terms: Public domain | W3C validator |