MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfucl Structured version   Visualization version   GIF version

Theorem idfucl 17823
Description: The identity functor is a functor. Example 3.20(1) of [Adamek] p. 30. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypothesis
Ref Expression
idfucl.i 𝐼 = (idfunc𝐶)
Assertion
Ref Expression
idfucl (𝐶 ∈ Cat → 𝐼 ∈ (𝐶 Func 𝐶))

Proof of Theorem idfucl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idfucl.i . . . 4 𝐼 = (idfunc𝐶)
2 eqid 2729 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 id 22 . . . 4 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
4 eqid 2729 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
51, 2, 3, 4idfuval 17818 . . 3 (𝐶 ∈ Cat → 𝐼 = ⟨( I ↾ (Base‘𝐶)), (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))⟩)
65fveq2d 6844 . . . . 5 (𝐶 ∈ Cat → (2nd𝐼) = (2nd ‘⟨( I ↾ (Base‘𝐶)), (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))⟩))
7 fvex 6853 . . . . . . 7 (Base‘𝐶) ∈ V
8 resiexg 7868 . . . . . . 7 ((Base‘𝐶) ∈ V → ( I ↾ (Base‘𝐶)) ∈ V)
97, 8ax-mp 5 . . . . . 6 ( I ↾ (Base‘𝐶)) ∈ V
107, 7xpex 7709 . . . . . . 7 ((Base‘𝐶) × (Base‘𝐶)) ∈ V
1110mptex 7179 . . . . . 6 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧))) ∈ V
129, 11op2nd 7956 . . . . 5 (2nd ‘⟨( I ↾ (Base‘𝐶)), (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))⟩) = (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))
136, 12eqtrdi 2780 . . . 4 (𝐶 ∈ Cat → (2nd𝐼) = (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧))))
1413opeq2d 4840 . . 3 (𝐶 ∈ Cat → ⟨( I ↾ (Base‘𝐶)), (2nd𝐼)⟩ = ⟨( I ↾ (Base‘𝐶)), (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))⟩)
155, 14eqtr4d 2767 . 2 (𝐶 ∈ Cat → 𝐼 = ⟨( I ↾ (Base‘𝐶)), (2nd𝐼)⟩)
16 f1oi 6820 . . . . 5 ( I ↾ (Base‘𝐶)):(Base‘𝐶)–1-1-onto→(Base‘𝐶)
17 f1of 6782 . . . . 5 (( I ↾ (Base‘𝐶)):(Base‘𝐶)–1-1-onto→(Base‘𝐶) → ( I ↾ (Base‘𝐶)):(Base‘𝐶)⟶(Base‘𝐶))
1816, 17mp1i 13 . . . 4 (𝐶 ∈ Cat → ( I ↾ (Base‘𝐶)):(Base‘𝐶)⟶(Base‘𝐶))
19 f1oi 6820 . . . . . . . . . 10 ( I ↾ ((Hom ‘𝐶)‘𝑧)):((Hom ‘𝐶)‘𝑧)–1-1-onto→((Hom ‘𝐶)‘𝑧)
20 f1of 6782 . . . . . . . . . 10 (( I ↾ ((Hom ‘𝐶)‘𝑧)):((Hom ‘𝐶)‘𝑧)–1-1-onto→((Hom ‘𝐶)‘𝑧) → ( I ↾ ((Hom ‘𝐶)‘𝑧)):((Hom ‘𝐶)‘𝑧)⟶((Hom ‘𝐶)‘𝑧))
2119, 20ax-mp 5 . . . . . . . . 9 ( I ↾ ((Hom ‘𝐶)‘𝑧)):((Hom ‘𝐶)‘𝑧)⟶((Hom ‘𝐶)‘𝑧)
22 fvex 6853 . . . . . . . . . 10 ((Hom ‘𝐶)‘𝑧) ∈ V
2322, 22elmap 8821 . . . . . . . . 9 (( I ↾ ((Hom ‘𝐶)‘𝑧)) ∈ (((Hom ‘𝐶)‘𝑧) ↑m ((Hom ‘𝐶)‘𝑧)) ↔ ( I ↾ ((Hom ‘𝐶)‘𝑧)):((Hom ‘𝐶)‘𝑧)⟶((Hom ‘𝐶)‘𝑧))
2421, 23mpbir 231 . . . . . . . 8 ( I ↾ ((Hom ‘𝐶)‘𝑧)) ∈ (((Hom ‘𝐶)‘𝑧) ↑m ((Hom ‘𝐶)‘𝑧))
25 xp1st 7979 . . . . . . . . . . . . . 14 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑧) ∈ (Base‘𝐶))
2625adantl 481 . . . . . . . . . . . . 13 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (1st𝑧) ∈ (Base‘𝐶))
27 fvresi 7129 . . . . . . . . . . . . 13 ((1st𝑧) ∈ (Base‘𝐶) → (( I ↾ (Base‘𝐶))‘(1st𝑧)) = (1st𝑧))
2826, 27syl 17 . . . . . . . . . . . 12 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (( I ↾ (Base‘𝐶))‘(1st𝑧)) = (1st𝑧))
29 xp2nd 7980 . . . . . . . . . . . . . 14 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑧) ∈ (Base‘𝐶))
3029adantl 481 . . . . . . . . . . . . 13 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (2nd𝑧) ∈ (Base‘𝐶))
31 fvresi 7129 . . . . . . . . . . . . 13 ((2nd𝑧) ∈ (Base‘𝐶) → (( I ↾ (Base‘𝐶))‘(2nd𝑧)) = (2nd𝑧))
3230, 31syl 17 . . . . . . . . . . . 12 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (( I ↾ (Base‘𝐶))‘(2nd𝑧)) = (2nd𝑧))
3328, 32oveq12d 7387 . . . . . . . . . . 11 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) = ((1st𝑧)(Hom ‘𝐶)(2nd𝑧)))
34 df-ov 7372 . . . . . . . . . . 11 ((1st𝑧)(Hom ‘𝐶)(2nd𝑧)) = ((Hom ‘𝐶)‘⟨(1st𝑧), (2nd𝑧)⟩)
3533, 34eqtrdi 2780 . . . . . . . . . 10 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) = ((Hom ‘𝐶)‘⟨(1st𝑧), (2nd𝑧)⟩))
36 1st2nd2 7986 . . . . . . . . . . . 12 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
3736adantl 481 . . . . . . . . . . 11 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
3837fveq2d 6844 . . . . . . . . . 10 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Hom ‘𝐶)‘𝑧) = ((Hom ‘𝐶)‘⟨(1st𝑧), (2nd𝑧)⟩))
3935, 38eqtr4d 2767 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) = ((Hom ‘𝐶)‘𝑧))
4039oveq1d 7384 . . . . . . . 8 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) = (((Hom ‘𝐶)‘𝑧) ↑m ((Hom ‘𝐶)‘𝑧)))
4124, 40eleqtrrid 2835 . . . . . . 7 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ( I ↾ ((Hom ‘𝐶)‘𝑧)) ∈ (((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)))
4241ralrimiva 3125 . . . . . 6 (𝐶 ∈ Cat → ∀𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))( I ↾ ((Hom ‘𝐶)‘𝑧)) ∈ (((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)))
43 mptelixpg 8885 . . . . . . 7 (((Base‘𝐶) × (Base‘𝐶)) ∈ V → ((𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧))) ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ↔ ∀𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))( I ↾ ((Hom ‘𝐶)‘𝑧)) ∈ (((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧))))
4410, 43ax-mp 5 . . . . . 6 ((𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧))) ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ↔ ∀𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))( I ↾ ((Hom ‘𝐶)‘𝑧)) ∈ (((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)))
4542, 44sylibr 234 . . . . 5 (𝐶 ∈ Cat → (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧))) ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)))
4613, 45eqeltrd 2828 . . . 4 (𝐶 ∈ Cat → (2nd𝐼) ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)))
47 eqid 2729 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
48 simpl 482 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
49 simpr 484 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
502, 4, 47, 48, 49catidcl 17623 . . . . . . . 8 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
51 fvresi 7129 . . . . . . . 8 (((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥) → (( I ↾ (𝑥(Hom ‘𝐶)𝑥))‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐶)‘𝑥))
5250, 51syl 17 . . . . . . 7 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → (( I ↾ (𝑥(Hom ‘𝐶)𝑥))‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐶)‘𝑥))
531, 2, 48, 4, 49, 49idfu2nd 17819 . . . . . . . 8 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑥(2nd𝐼)𝑥) = ( I ↾ (𝑥(Hom ‘𝐶)𝑥)))
5453fveq1d 6842 . . . . . . 7 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐼)𝑥)‘((Id‘𝐶)‘𝑥)) = (( I ↾ (𝑥(Hom ‘𝐶)𝑥))‘((Id‘𝐶)‘𝑥)))
55 fvresi 7129 . . . . . . . . 9 (𝑥 ∈ (Base‘𝐶) → (( I ↾ (Base‘𝐶))‘𝑥) = 𝑥)
5655adantl 481 . . . . . . . 8 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → (( I ↾ (Base‘𝐶))‘𝑥) = 𝑥)
5756fveq2d 6844 . . . . . . 7 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘(( I ↾ (Base‘𝐶))‘𝑥)) = ((Id‘𝐶)‘𝑥))
5852, 54, 573eqtr4d 2774 . . . . . 6 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐼)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐶)‘(( I ↾ (Base‘𝐶))‘𝑥)))
59 eqid 2729 . . . . . . . . . . 11 (comp‘𝐶) = (comp‘𝐶)
6048ad2antrr 726 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐶 ∈ Cat)
6149ad2antrr 726 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ (Base‘𝐶))
62 simplrl 776 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦 ∈ (Base‘𝐶))
63 simplrr 777 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ (Base‘𝐶))
64 simprl 770 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
65 simprr 772 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
662, 4, 59, 60, 61, 62, 63, 64, 65catcocl 17626 . . . . . . . . . 10 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
67 fvresi 7129 . . . . . . . . . 10 ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → (( I ↾ (𝑥(Hom ‘𝐶)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
6866, 67syl 17 . . . . . . . . 9 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (( I ↾ (𝑥(Hom ‘𝐶)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
691, 2, 60, 4, 61, 63idfu2nd 17819 . . . . . . . . . 10 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(2nd𝐼)𝑧) = ( I ↾ (𝑥(Hom ‘𝐶)𝑧)))
7069fveq1d 6842 . . . . . . . . 9 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐼)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (( I ↾ (𝑥(Hom ‘𝐶)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
7161, 55syl 17 . . . . . . . . . . . 12 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (( I ↾ (Base‘𝐶))‘𝑥) = 𝑥)
72 fvresi 7129 . . . . . . . . . . . . 13 (𝑦 ∈ (Base‘𝐶) → (( I ↾ (Base‘𝐶))‘𝑦) = 𝑦)
7362, 72syl 17 . . . . . . . . . . . 12 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (( I ↾ (Base‘𝐶))‘𝑦) = 𝑦)
7471, 73opeq12d 4841 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ⟨(( I ↾ (Base‘𝐶))‘𝑥), (( I ↾ (Base‘𝐶))‘𝑦)⟩ = ⟨𝑥, 𝑦⟩)
75 fvresi 7129 . . . . . . . . . . . 12 (𝑧 ∈ (Base‘𝐶) → (( I ↾ (Base‘𝐶))‘𝑧) = 𝑧)
7663, 75syl 17 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (( I ↾ (Base‘𝐶))‘𝑧) = 𝑧)
7774, 76oveq12d 7387 . . . . . . . . . 10 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (⟨(( I ↾ (Base‘𝐶))‘𝑥), (( I ↾ (Base‘𝐶))‘𝑦)⟩(comp‘𝐶)(( I ↾ (Base‘𝐶))‘𝑧)) = (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧))
781, 2, 60, 4, 62, 63, 65idfu2 17820 . . . . . . . . . 10 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐼)𝑧)‘𝑔) = 𝑔)
791, 2, 60, 4, 61, 62, 64idfu2 17820 . . . . . . . . . 10 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐼)𝑦)‘𝑓) = 𝑓)
8077, 78, 79oveq123d 7390 . . . . . . . . 9 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝐼)𝑧)‘𝑔)(⟨(( I ↾ (Base‘𝐶))‘𝑥), (( I ↾ (Base‘𝐶))‘𝑦)⟩(comp‘𝐶)(( I ↾ (Base‘𝐶))‘𝑧))((𝑥(2nd𝐼)𝑦)‘𝑓)) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
8168, 70, 803eqtr4d 2774 . . . . . . . 8 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐼)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐼)𝑧)‘𝑔)(⟨(( I ↾ (Base‘𝐶))‘𝑥), (( I ↾ (Base‘𝐶))‘𝑦)⟩(comp‘𝐶)(( I ↾ (Base‘𝐶))‘𝑧))((𝑥(2nd𝐼)𝑦)‘𝑓)))
8281ralrimivva 3178 . . . . . . 7 (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd𝐼)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐼)𝑧)‘𝑔)(⟨(( I ↾ (Base‘𝐶))‘𝑥), (( I ↾ (Base‘𝐶))‘𝑦)⟩(comp‘𝐶)(( I ↾ (Base‘𝐶))‘𝑧))((𝑥(2nd𝐼)𝑦)‘𝑓)))
8382ralrimivva 3178 . . . . . 6 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd𝐼)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐼)𝑧)‘𝑔)(⟨(( I ↾ (Base‘𝐶))‘𝑥), (( I ↾ (Base‘𝐶))‘𝑦)⟩(comp‘𝐶)(( I ↾ (Base‘𝐶))‘𝑧))((𝑥(2nd𝐼)𝑦)‘𝑓)))
8458, 83jca 511 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → (((𝑥(2nd𝐼)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐶)‘(( I ↾ (Base‘𝐶))‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd𝐼)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐼)𝑧)‘𝑔)(⟨(( I ↾ (Base‘𝐶))‘𝑥), (( I ↾ (Base‘𝐶))‘𝑦)⟩(comp‘𝐶)(( I ↾ (Base‘𝐶))‘𝑧))((𝑥(2nd𝐼)𝑦)‘𝑓))))
8584ralrimiva 3125 . . . 4 (𝐶 ∈ Cat → ∀𝑥 ∈ (Base‘𝐶)(((𝑥(2nd𝐼)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐶)‘(( I ↾ (Base‘𝐶))‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd𝐼)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐼)𝑧)‘𝑔)(⟨(( I ↾ (Base‘𝐶))‘𝑥), (( I ↾ (Base‘𝐶))‘𝑦)⟩(comp‘𝐶)(( I ↾ (Base‘𝐶))‘𝑧))((𝑥(2nd𝐼)𝑦)‘𝑓))))
862, 2, 4, 4, 47, 47, 59, 59, 3, 3isfunc 17806 . . . 4 (𝐶 ∈ Cat → (( I ↾ (Base‘𝐶))(𝐶 Func 𝐶)(2nd𝐼) ↔ (( I ↾ (Base‘𝐶)):(Base‘𝐶)⟶(Base‘𝐶) ∧ (2nd𝐼) ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ∧ ∀𝑥 ∈ (Base‘𝐶)(((𝑥(2nd𝐼)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐶)‘(( I ↾ (Base‘𝐶))‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd𝐼)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐼)𝑧)‘𝑔)(⟨(( I ↾ (Base‘𝐶))‘𝑥), (( I ↾ (Base‘𝐶))‘𝑦)⟩(comp‘𝐶)(( I ↾ (Base‘𝐶))‘𝑧))((𝑥(2nd𝐼)𝑦)‘𝑓))))))
8718, 46, 85, 86mpbir3and 1343 . . 3 (𝐶 ∈ Cat → ( I ↾ (Base‘𝐶))(𝐶 Func 𝐶)(2nd𝐼))
88 df-br 5103 . . 3 (( I ↾ (Base‘𝐶))(𝐶 Func 𝐶)(2nd𝐼) ↔ ⟨( I ↾ (Base‘𝐶)), (2nd𝐼)⟩ ∈ (𝐶 Func 𝐶))
8987, 88sylib 218 . 2 (𝐶 ∈ Cat → ⟨( I ↾ (Base‘𝐶)), (2nd𝐼)⟩ ∈ (𝐶 Func 𝐶))
9015, 89eqeltrd 2828 1 (𝐶 ∈ Cat → 𝐼 ∈ (𝐶 Func 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  cop 4591   class class class wbr 5102  cmpt 5183   I cid 5525   × cxp 5629  cres 5633  wf 6495  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  m cmap 8776  Xcixp 8847  Basecbs 17155  Hom chom 17207  compcco 17208  Catccat 17605  Idccid 17606   Func cfunc 17796  idfunccidfu 17797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-cat 17609  df-cid 17610  df-func 17800  df-idfu 17801
This theorem is referenced by:  cofulid  17832  cofurid  17833  idffth  17877  ressffth  17882  catccatid  18048  curf2ndf  18188  idfu1stalem  49082  idfu2nda  49085  euendfunc  49508
  Copyright terms: Public domain W3C validator