MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfucl Structured version   Visualization version   GIF version

Theorem idfucl 17838
Description: The identity functor is a functor. Example 3.20(1) of [Adamek] p. 30. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypothesis
Ref Expression
idfucl.i 𝐼 = (idfunc𝐶)
Assertion
Ref Expression
idfucl (𝐶 ∈ Cat → 𝐼 ∈ (𝐶 Func 𝐶))

Proof of Theorem idfucl
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idfucl.i . . . 4 𝐼 = (idfunc𝐶)
2 eqid 2731 . . . 4 (Base‘𝐶) = (Base‘𝐶)
3 id 22 . . . 4 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
4 eqid 2731 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
51, 2, 3, 4idfuval 17833 . . 3 (𝐶 ∈ Cat → 𝐼 = ⟨( I ↾ (Base‘𝐶)), (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))⟩)
65fveq2d 6895 . . . . 5 (𝐶 ∈ Cat → (2nd𝐼) = (2nd ‘⟨( I ↾ (Base‘𝐶)), (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))⟩))
7 fvex 6904 . . . . . . 7 (Base‘𝐶) ∈ V
8 resiexg 7909 . . . . . . 7 ((Base‘𝐶) ∈ V → ( I ↾ (Base‘𝐶)) ∈ V)
97, 8ax-mp 5 . . . . . 6 ( I ↾ (Base‘𝐶)) ∈ V
107, 7xpex 7744 . . . . . . 7 ((Base‘𝐶) × (Base‘𝐶)) ∈ V
1110mptex 7227 . . . . . 6 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧))) ∈ V
129, 11op2nd 7988 . . . . 5 (2nd ‘⟨( I ↾ (Base‘𝐶)), (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))⟩) = (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))
136, 12eqtrdi 2787 . . . 4 (𝐶 ∈ Cat → (2nd𝐼) = (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧))))
1413opeq2d 4880 . . 3 (𝐶 ∈ Cat → ⟨( I ↾ (Base‘𝐶)), (2nd𝐼)⟩ = ⟨( I ↾ (Base‘𝐶)), (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧)))⟩)
155, 14eqtr4d 2774 . 2 (𝐶 ∈ Cat → 𝐼 = ⟨( I ↾ (Base‘𝐶)), (2nd𝐼)⟩)
16 f1oi 6871 . . . . 5 ( I ↾ (Base‘𝐶)):(Base‘𝐶)–1-1-onto→(Base‘𝐶)
17 f1of 6833 . . . . 5 (( I ↾ (Base‘𝐶)):(Base‘𝐶)–1-1-onto→(Base‘𝐶) → ( I ↾ (Base‘𝐶)):(Base‘𝐶)⟶(Base‘𝐶))
1816, 17mp1i 13 . . . 4 (𝐶 ∈ Cat → ( I ↾ (Base‘𝐶)):(Base‘𝐶)⟶(Base‘𝐶))
19 f1oi 6871 . . . . . . . . . 10 ( I ↾ ((Hom ‘𝐶)‘𝑧)):((Hom ‘𝐶)‘𝑧)–1-1-onto→((Hom ‘𝐶)‘𝑧)
20 f1of 6833 . . . . . . . . . 10 (( I ↾ ((Hom ‘𝐶)‘𝑧)):((Hom ‘𝐶)‘𝑧)–1-1-onto→((Hom ‘𝐶)‘𝑧) → ( I ↾ ((Hom ‘𝐶)‘𝑧)):((Hom ‘𝐶)‘𝑧)⟶((Hom ‘𝐶)‘𝑧))
2119, 20ax-mp 5 . . . . . . . . 9 ( I ↾ ((Hom ‘𝐶)‘𝑧)):((Hom ‘𝐶)‘𝑧)⟶((Hom ‘𝐶)‘𝑧)
22 fvex 6904 . . . . . . . . . 10 ((Hom ‘𝐶)‘𝑧) ∈ V
2322, 22elmap 8871 . . . . . . . . 9 (( I ↾ ((Hom ‘𝐶)‘𝑧)) ∈ (((Hom ‘𝐶)‘𝑧) ↑m ((Hom ‘𝐶)‘𝑧)) ↔ ( I ↾ ((Hom ‘𝐶)‘𝑧)):((Hom ‘𝐶)‘𝑧)⟶((Hom ‘𝐶)‘𝑧))
2421, 23mpbir 230 . . . . . . . 8 ( I ↾ ((Hom ‘𝐶)‘𝑧)) ∈ (((Hom ‘𝐶)‘𝑧) ↑m ((Hom ‘𝐶)‘𝑧))
25 xp1st 8011 . . . . . . . . . . . . . 14 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (1st𝑧) ∈ (Base‘𝐶))
2625adantl 481 . . . . . . . . . . . . 13 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (1st𝑧) ∈ (Base‘𝐶))
27 fvresi 7173 . . . . . . . . . . . . 13 ((1st𝑧) ∈ (Base‘𝐶) → (( I ↾ (Base‘𝐶))‘(1st𝑧)) = (1st𝑧))
2826, 27syl 17 . . . . . . . . . . . 12 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (( I ↾ (Base‘𝐶))‘(1st𝑧)) = (1st𝑧))
29 xp2nd 8012 . . . . . . . . . . . . . 14 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) → (2nd𝑧) ∈ (Base‘𝐶))
3029adantl 481 . . . . . . . . . . . . 13 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (2nd𝑧) ∈ (Base‘𝐶))
31 fvresi 7173 . . . . . . . . . . . . 13 ((2nd𝑧) ∈ (Base‘𝐶) → (( I ↾ (Base‘𝐶))‘(2nd𝑧)) = (2nd𝑧))
3230, 31syl 17 . . . . . . . . . . . 12 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (( I ↾ (Base‘𝐶))‘(2nd𝑧)) = (2nd𝑧))
3328, 32oveq12d 7430 . . . . . . . . . . 11 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) = ((1st𝑧)(Hom ‘𝐶)(2nd𝑧)))
34 df-ov 7415 . . . . . . . . . . 11 ((1st𝑧)(Hom ‘𝐶)(2nd𝑧)) = ((Hom ‘𝐶)‘⟨(1st𝑧), (2nd𝑧)⟩)
3533, 34eqtrdi 2787 . . . . . . . . . 10 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) = ((Hom ‘𝐶)‘⟨(1st𝑧), (2nd𝑧)⟩))
36 1st2nd2 8018 . . . . . . . . . . . 12 (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
3736adantl 481 . . . . . . . . . . 11 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
3837fveq2d 6895 . . . . . . . . . 10 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((Hom ‘𝐶)‘𝑧) = ((Hom ‘𝐶)‘⟨(1st𝑧), (2nd𝑧)⟩))
3935, 38eqtr4d 2774 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) = ((Hom ‘𝐶)‘𝑧))
4039oveq1d 7427 . . . . . . . 8 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → (((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) = (((Hom ‘𝐶)‘𝑧) ↑m ((Hom ‘𝐶)‘𝑧)))
4124, 40eleqtrrid 2839 . . . . . . 7 ((𝐶 ∈ Cat ∧ 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))) → ( I ↾ ((Hom ‘𝐶)‘𝑧)) ∈ (((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)))
4241ralrimiva 3145 . . . . . 6 (𝐶 ∈ Cat → ∀𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))( I ↾ ((Hom ‘𝐶)‘𝑧)) ∈ (((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)))
43 mptelixpg 8935 . . . . . . 7 (((Base‘𝐶) × (Base‘𝐶)) ∈ V → ((𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧))) ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ↔ ∀𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))( I ↾ ((Hom ‘𝐶)‘𝑧)) ∈ (((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧))))
4410, 43ax-mp 5 . . . . . 6 ((𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧))) ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ↔ ∀𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))( I ↾ ((Hom ‘𝐶)‘𝑧)) ∈ (((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)))
4542, 44sylibr 233 . . . . 5 (𝐶 ∈ Cat → (𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶)) ↦ ( I ↾ ((Hom ‘𝐶)‘𝑧))) ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)))
4613, 45eqeltrd 2832 . . . 4 (𝐶 ∈ Cat → (2nd𝐼) ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)))
47 eqid 2731 . . . . . . . . 9 (Id‘𝐶) = (Id‘𝐶)
48 simpl 482 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
49 simpr 484 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
502, 4, 47, 48, 49catidcl 17633 . . . . . . . 8 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
51 fvresi 7173 . . . . . . . 8 (((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥) → (( I ↾ (𝑥(Hom ‘𝐶)𝑥))‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐶)‘𝑥))
5250, 51syl 17 . . . . . . 7 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → (( I ↾ (𝑥(Hom ‘𝐶)𝑥))‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐶)‘𝑥))
531, 2, 48, 4, 49, 49idfu2nd 17834 . . . . . . . 8 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑥(2nd𝐼)𝑥) = ( I ↾ (𝑥(Hom ‘𝐶)𝑥)))
5453fveq1d 6893 . . . . . . 7 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐼)𝑥)‘((Id‘𝐶)‘𝑥)) = (( I ↾ (𝑥(Hom ‘𝐶)𝑥))‘((Id‘𝐶)‘𝑥)))
55 fvresi 7173 . . . . . . . . 9 (𝑥 ∈ (Base‘𝐶) → (( I ↾ (Base‘𝐶))‘𝑥) = 𝑥)
5655adantl 481 . . . . . . . 8 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → (( I ↾ (Base‘𝐶))‘𝑥) = 𝑥)
5756fveq2d 6895 . . . . . . 7 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘(( I ↾ (Base‘𝐶))‘𝑥)) = ((Id‘𝐶)‘𝑥))
5852, 54, 573eqtr4d 2781 . . . . . 6 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑥(2nd𝐼)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐶)‘(( I ↾ (Base‘𝐶))‘𝑥)))
59 eqid 2731 . . . . . . . . . . 11 (comp‘𝐶) = (comp‘𝐶)
6048ad2antrr 723 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝐶 ∈ Cat)
6149ad2antrr 723 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑥 ∈ (Base‘𝐶))
62 simplrl 774 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑦 ∈ (Base‘𝐶))
63 simplrr 775 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑧 ∈ (Base‘𝐶))
64 simprl 768 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
65 simprr 770 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
662, 4, 59, 60, 61, 62, 63, 64, 65catcocl 17636 . . . . . . . . . 10 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
67 fvresi 7173 . . . . . . . . . 10 ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → (( I ↾ (𝑥(Hom ‘𝐶)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
6866, 67syl 17 . . . . . . . . 9 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (( I ↾ (𝑥(Hom ‘𝐶)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
691, 2, 60, 4, 61, 63idfu2nd 17834 . . . . . . . . . 10 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (𝑥(2nd𝐼)𝑧) = ( I ↾ (𝑥(Hom ‘𝐶)𝑧)))
7069fveq1d 6893 . . . . . . . . 9 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐼)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (( I ↾ (𝑥(Hom ‘𝐶)𝑧))‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
7161, 55syl 17 . . . . . . . . . . . 12 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (( I ↾ (Base‘𝐶))‘𝑥) = 𝑥)
72 fvresi 7173 . . . . . . . . . . . . 13 (𝑦 ∈ (Base‘𝐶) → (( I ↾ (Base‘𝐶))‘𝑦) = 𝑦)
7362, 72syl 17 . . . . . . . . . . . 12 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (( I ↾ (Base‘𝐶))‘𝑦) = 𝑦)
7471, 73opeq12d 4881 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ⟨(( I ↾ (Base‘𝐶))‘𝑥), (( I ↾ (Base‘𝐶))‘𝑦)⟩ = ⟨𝑥, 𝑦⟩)
75 fvresi 7173 . . . . . . . . . . . 12 (𝑧 ∈ (Base‘𝐶) → (( I ↾ (Base‘𝐶))‘𝑧) = 𝑧)
7663, 75syl 17 . . . . . . . . . . 11 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (( I ↾ (Base‘𝐶))‘𝑧) = 𝑧)
7774, 76oveq12d 7430 . . . . . . . . . 10 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (⟨(( I ↾ (Base‘𝐶))‘𝑥), (( I ↾ (Base‘𝐶))‘𝑦)⟩(comp‘𝐶)(( I ↾ (Base‘𝐶))‘𝑧)) = (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧))
781, 2, 60, 4, 62, 63, 65idfu2 17835 . . . . . . . . . 10 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑦(2nd𝐼)𝑧)‘𝑔) = 𝑔)
791, 2, 60, 4, 61, 62, 64idfu2 17835 . . . . . . . . . 10 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐼)𝑦)‘𝑓) = 𝑓)
8077, 78, 79oveq123d 7433 . . . . . . . . 9 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → (((𝑦(2nd𝐼)𝑧)‘𝑔)(⟨(( I ↾ (Base‘𝐶))‘𝑥), (( I ↾ (Base‘𝐶))‘𝑦)⟩(comp‘𝐶)(( I ↾ (Base‘𝐶))‘𝑧))((𝑥(2nd𝐼)𝑦)‘𝑓)) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
8168, 70, 803eqtr4d 2781 . . . . . . . 8 ((((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) ∧ (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))) → ((𝑥(2nd𝐼)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐼)𝑧)‘𝑔)(⟨(( I ↾ (Base‘𝐶))‘𝑥), (( I ↾ (Base‘𝐶))‘𝑦)⟩(comp‘𝐶)(( I ↾ (Base‘𝐶))‘𝑧))((𝑥(2nd𝐼)𝑦)‘𝑓)))
8281ralrimivva 3199 . . . . . . 7 (((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd𝐼)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐼)𝑧)‘𝑔)(⟨(( I ↾ (Base‘𝐶))‘𝑥), (( I ↾ (Base‘𝐶))‘𝑦)⟩(comp‘𝐶)(( I ↾ (Base‘𝐶))‘𝑧))((𝑥(2nd𝐼)𝑦)‘𝑓)))
8382ralrimivva 3199 . . . . . 6 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd𝐼)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐼)𝑧)‘𝑔)(⟨(( I ↾ (Base‘𝐶))‘𝑥), (( I ↾ (Base‘𝐶))‘𝑦)⟩(comp‘𝐶)(( I ↾ (Base‘𝐶))‘𝑧))((𝑥(2nd𝐼)𝑦)‘𝑓)))
8458, 83jca 511 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → (((𝑥(2nd𝐼)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐶)‘(( I ↾ (Base‘𝐶))‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd𝐼)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐼)𝑧)‘𝑔)(⟨(( I ↾ (Base‘𝐶))‘𝑥), (( I ↾ (Base‘𝐶))‘𝑦)⟩(comp‘𝐶)(( I ↾ (Base‘𝐶))‘𝑧))((𝑥(2nd𝐼)𝑦)‘𝑓))))
8584ralrimiva 3145 . . . 4 (𝐶 ∈ Cat → ∀𝑥 ∈ (Base‘𝐶)(((𝑥(2nd𝐼)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐶)‘(( I ↾ (Base‘𝐶))‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd𝐼)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐼)𝑧)‘𝑔)(⟨(( I ↾ (Base‘𝐶))‘𝑥), (( I ↾ (Base‘𝐶))‘𝑦)⟩(comp‘𝐶)(( I ↾ (Base‘𝐶))‘𝑧))((𝑥(2nd𝐼)𝑦)‘𝑓))))
862, 2, 4, 4, 47, 47, 59, 59, 3, 3isfunc 17821 . . . 4 (𝐶 ∈ Cat → (( I ↾ (Base‘𝐶))(𝐶 Func 𝐶)(2nd𝐼) ↔ (( I ↾ (Base‘𝐶)):(Base‘𝐶)⟶(Base‘𝐶) ∧ (2nd𝐼) ∈ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((( I ↾ (Base‘𝐶))‘(1st𝑧))(Hom ‘𝐶)(( I ↾ (Base‘𝐶))‘(2nd𝑧))) ↑m ((Hom ‘𝐶)‘𝑧)) ∧ ∀𝑥 ∈ (Base‘𝐶)(((𝑥(2nd𝐼)𝑥)‘((Id‘𝐶)‘𝑥)) = ((Id‘𝐶)‘(( I ↾ (Base‘𝐶))‘𝑥)) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑥(2nd𝐼)𝑧)‘(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = (((𝑦(2nd𝐼)𝑧)‘𝑔)(⟨(( I ↾ (Base‘𝐶))‘𝑥), (( I ↾ (Base‘𝐶))‘𝑦)⟩(comp‘𝐶)(( I ↾ (Base‘𝐶))‘𝑧))((𝑥(2nd𝐼)𝑦)‘𝑓))))))
8718, 46, 85, 86mpbir3and 1341 . . 3 (𝐶 ∈ Cat → ( I ↾ (Base‘𝐶))(𝐶 Func 𝐶)(2nd𝐼))
88 df-br 5149 . . 3 (( I ↾ (Base‘𝐶))(𝐶 Func 𝐶)(2nd𝐼) ↔ ⟨( I ↾ (Base‘𝐶)), (2nd𝐼)⟩ ∈ (𝐶 Func 𝐶))
8987, 88sylib 217 . 2 (𝐶 ∈ Cat → ⟨( I ↾ (Base‘𝐶)), (2nd𝐼)⟩ ∈ (𝐶 Func 𝐶))
9015, 89eqeltrd 2832 1 (𝐶 ∈ Cat → 𝐼 ∈ (𝐶 Func 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wral 3060  Vcvv 3473  cop 4634   class class class wbr 5148  cmpt 5231   I cid 5573   × cxp 5674  cres 5678  wf 6539  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7412  1st c1st 7977  2nd c2nd 7978  m cmap 8826  Xcixp 8897  Basecbs 17151  Hom chom 17215  compcco 17216  Catccat 17615  Idccid 17616   Func cfunc 17811  idfunccidfu 17812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-map 8828  df-ixp 8898  df-cat 17619  df-cid 17620  df-func 17815  df-idfu 17816
This theorem is referenced by:  cofulid  17847  cofurid  17848  idffth  17893  ressffth  17898  catccatid  18066  curf2ndf  18210
  Copyright terms: Public domain W3C validator